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ABSTRACT 
Cucumber is one of the most widely consumed vegetable crops globally. Rice-washing water has not been previously 
explored as a potential source for producing secondary metabolites from antagonistic fungi. Phytophthora species 
frequently affect cucumber seedlings, leading to crown and root rot. This research aimed to assess the efficacy of 
washing water from various rice types on the conidial density of Trichoderma harzianum T10 and its impact on crown 
and root rot in cucumber seedlings and overall plant growth. We conducted four treatments with rice washing water 
in vitro under a completely randomized design, comprising six replicates. Five treatments were evaluated in planta 
under a randomized block design with five replicates. The observed variables included conidial density, incubation 
period, disease incidence, disease progression expressed as the Area Under the Disease Progress Curve (AUDPC), 
plant height, fresh weight, and root length. The results indicated that washing water from glutinous rice provided the 
optimal medium for T. harzianum T10, yielding a conidial density of 10.3 × 10-6 conidia mL-1, representing a 66.02% 
increase compared to washing water from white rice. The crude secondary metabolites produced by T. harzianum 
T10 in glutinous rice washing water significantly extended the incubation period and reduced disease incidence and 
AUDPC values by 40.34, 62.07, and 69.41%, respectively, compared to the control. Furthermore, the secondary 
metabolites from T. harzianum T10 in glutinous rice washing water enhanced plant height, fresh weight, and root 
length by 91.81, 92.42, and 95.21%, respectively, compared to the control. 
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INTRODUCTION 
Cucumber (Cucumis sativus L.) is a horticultural 

commodity highly valued by the public due to its 
numerous benefits for daily life. This vegetable is rich in 
various nutrients and bioactive compounds that are 
beneficial for consumption and medicinal purposes 
(Uthpala et al. 2020). In Indonesia, cucumber production 
reached 4,440,567 tons in 2022; however, in 2023, 
production declined to 4,167,281 tons, representing a 
decrease of 6.15% (BPS-Statistics Indonesia 2023). 
Multiple factors can contribute to the decline in cucumber 
production, including the quality of superior seeds, soil 
fertility conditions, climatic influences, as well as pest 
infestations and plant diseases (Daunde et al. 2020; 
Parkash et al. 2021; Aparna et al. 2023). 

One of the major diseases affecting cucumbers is 
seedling crown and root rot, which is caused by the 
pathogenic fungus Pythium sp. (Sigillo et al. 2020). 
Cucumber plants infected by this pathogen can 
experience significant losses. Pythium sp. begins to 
invade the seeds during germination in the soil and 
continues to affect the sprouts as they break through the 
soil's surface, resulting in symptoms such as lodging and 
plant death (Lamichhane et al. 2017). Several strategies 
can be employed to prevent and manage seedling crown 
and root rot; however, disease management 
predominantly relies on the use of synthetic chemical 
fungicides (Wu et al. 2023). The continuous and 
indiscriminate application of synthetic fungicides can 
have detrimental effects, not only on human health but 
also leading to environmental pollution (Okagu et al. 
2023). Furthermore, chemical interventions have proven 
inadequate in fully addressing seedling crown and root 
rot. Alternative approaches, including the use of 
botanical fungicides and the development of resistant 
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cucumber varieties, have yet to manage this disease 
successfully, and resistant varieties are not widely 
available in the market. Additionally, the efficacy of 
resistant varieties can be short-lived, as they may lose 
their resistance by the subsequent growing season 
(Alam et al. 2024). 

An environmentally friendly approach to controlling 
seedling crown and root rot lies in the use of biological 
control agents. Among these, the antagonistic fungi 
genus Trichoderma has been widely utilized for its 
potential to suppress disease and promote plant growth 
(Usman Ghazanfar et al. 2018). In addition to controlling 
pathogens, Trichoderma species (TS) can stimulate 
plant growth and increase biomass production (Kumar et 
al. 2021; Contreras-Cornejo et al. 2024). This is 
attributed to the production of plant growth-promoting 
substances, including enzymes such as β-1,3-glucanase 
and chitinase (Kumar et al. 2023). Moreover, TS 
produces growth hormones, earning it the designation of 
a plant growth-promoting fungus (PGPF) (Kumar et al. 
2021; Contreras-Cornejo et al. 2024). Notably, 
Trichoderma-based approaches are typically applied as 
preventative measures, whereas their effectiveness in 
mitigating established plant infections remains unclear 
(Zin and Badaluddin 2020). Furthermore, the application 
of Trichoderma can cause unintended damage to 
mushroom cultivation (Hatvani et al. 2017; Aydoğdu et 
al. 2020). Field applications of Trichoderma are further 
hindered by abiotic (Fadiji et al. 2023) and biotic 
constraints (Negi et al. 2023). 

In light of these challenges, there is a pressing need 
for innovative approaches, including the utilization of 
secondary metabolites (SMs) produced by Trichoderma 
sp. Secondary metabolites are bioactive compounds that 
have negligible effects on organism or microorganism 
growth and development (Khan et al. 2020; Lv et al. 
2024). However, the production of Trichoderma SMs is 
currently hindered by high costs and impracticality 
associated with laboratory culture conditions (Khan et al. 
2020; Zhang et al. 2021). Rice-washing water has been 
used as a medium for Trichoderma cultivation, but its 
utility is limited by instability and poor yield 
(Hewavitharana et al. 2018; Asiandu et al. 2021; 
Ramadhana et al. 2022). Thus, there is a need to explore 
alternative sources of secondary metabolite production 
media. Interestingly, various types of rice, including white 
rice, brown rice, black rice, and glutinous rice, are 
commercially available but have not been utilized as 
sources of Trichoderma cultivation medium or as 
substrates to produce its secondary metabolites. This 
study aimed to investigate the efficacy of washing water 
from various rice types on T. harzianum T10 production 
and its impact on cucumber seedling crown and root rot, 
as well as its effects on seedling growth. 

MATERIALS AND METHODS 
The research was conducted at the Crop Protection 

Laboratory and greenhouse of the Faculty of Agriculture, 
Universitas Jenderal Soedirman, over a period of four 
months, from November 2023 to February 2024. 

Preparation of T. harzianum T10 
The Trichoderma harzianum isolates T10, sourced 

from the rhizosphere of ginger, were rejuvenated on 
Potato Dextrose Agar (PDA). One plug (1 cm diameter) 
of fungal colonies was extracted using a sterile cork 
borer and incubated for five days at room temperature. 

Preparation of rice washing water 
The rice varieties used in this study included white 

rice (IR 64), brown rice (Inpari 24 Gabusan), black rice 
(Super), and glutinous rice (Cempo Ireng). Fifty grams of 
each variety were weighed and placed in separate 
containers. Each rice sample was washed with 250 mL 
of water and stirred manually for two minutes (Nabayi et 
al. 2021). The washing water for each rice type was 
collected separately in 500 mL Erlenmeyer flasks and 
subsequently sterilized by autoclaving at 121 °C with a 
pressure of 15 psi for 20 minutes. 

Preparation of Pythium sp. 
Pythium sp. were isolated from cucumber seedlings 

exhibiting crown and root rot symptoms in the field. The 
seedlings were surface-sterilized for two minutes using 
70% ethanol and then rinsed three times with sterile 
water. The roots were then isolated on PDA (Parnell et 
al., 2024) and incubated at room temperature 
(approximately 28 °C). The growing isolates were 
morphologically identified using a microscope, with 
reference to existing literature (Schroeder et al. 2013; 
Chenari Bouket et al. 2015; Toporek and Keinath 2021). 

Production of secondary metabolites 
Sterile rice washing water media derived from white, 

glutinous, black, and red rice was inoculated with two 
plugs (1 cm diameter) of the T. harzianum T10 isolate in 
250 mL Erlenmeyer flasks (Soesanto et al. 2019). The 
flasks were shaken on an orbital shaker (Daiki) at 135 
rpm for seven days at room temperature (Khan et al. 
2020). Following the shaking period, the conidial density 
was assessed using a hemocytometer. After determining 
the density of T. harzianum T10 conidia, the solution was 
centrifuged at 9,000 rpm for two minutes to obtain crude 
secondary metabolites for further testing (Shehata et al. 
2019). 

Preparation of planting media 
Polybags containing pasteurized planting media, 

consisting of soil and manure in a 1:1 weight ratio, were 
prepared. Planting holes were created 1 cm deep and 
inoculated with one plug (1 cm diameter) of Pythium sp. 
culture. Subsequently, one cucumber seed was placed 
in each hole and covered with a thin layer of the planting 
media. 

Experimental design 
The in vitro experiment employed a completely 

randomized design consisting of four treatments: white 
rice washing water, brown rice washing water, black rice 
washing water, and glutinous rice washing water, with six 
replicates for each treatment. Sterile filter paper disks 
measuring 0.5 cm in diameter were immersed in each 
type of rice washing water, drained, and placed on PDA 
in Petri’s dishes at a distance of 3 cm from the edge of 
the dish. One plug (0.5 cm diameter) of Pythium sp. 
culture was positioned opposite the filter paper at a 
distance of 3 cm. The in-planta experiment utilized a 
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randomized block design with five treatments: control, 
white rice washing water, brown rice washing water, 
black rice washing water, and glutinous rice washing 
water, each with five replicates. Each treatment received 
10 mL of secondary metabolites of T. harzianum T10, 
derived from the washing water of the respective rice 
varieties, which was applied to the soil surface every 
three days for a total of five applications. 

Maintenance of seedlings 
Cucumber seedlings were maintained through 

regular watering and weeding. Watering was performed 
based on the moisture level of the soil media, while 
weeding was carried out manually. 

Observation and data collection 

Data were collected through various observations. 
The density of conidia was calculated using the following 
formula [1]: 

S = 
X

Lxtxd
x10

3
……………………………….[1] 

Where S represents conidia density, L is the area of 
the counting box (0.2 mm²), t is the depth of the counting 
field (0.1 mm), ddd is the dilution factor, and X is the 
average number of conidia in five samples boxes (a, b, 
c, d, e) (Akagi et al. 2015). The incubation period was 
monitored from Pythium inoculation until the first 
symptoms of seedling damping-off appeared, recorded 
in days after inoculation (dai).  

Disease incidence was assessed subsequent to 
treatment applications, with observations made every 
two days, calculated using the formula [2] used by 
Nathawat et al. (2020) as follows. 

DI = 
n

N
x100% ……………..…………….[2] 

Where DI denotes disease incidence (%), nnn is the 
number of affected plants, and NNN is the total number 
of observed plants. 

The Area Under the Disease Progress Curve 
(AUDPC) was calculated using the formula [3] used by 
Paraschivu et al. (2013) as follows. 

 AUDPC  = ∑ ((
(Yi-Yi+1)

2
) x(ti+1-t1))

  n

i=1
…………[3] 

Where AUDPC represents the disease progression 
curve (% per day), n is the number of observations, Yi is 
the disease incidence at the initial (previous) 
observation, Yi+1 is the disease incidence in the 
subsequent observation, ti is the time of the initial 
observation, and ti+1 is the time of the next observation. 
The height of the plants was measured every five days 
from the base to the apex using a ruler (cm). The wet 
weight of the plants was measured 21 days after planting 
(dap) using a digital scale (g). The root length was 
measured from the root collar to the root tip using a ruler 
(cm). 

Data analysis 
The data were analyzed using Analysis of Variance 

(ANOVA) at a 5% significance level, followed by Tukey's 
Honestly Significant Difference (HSD) test at the same 
significance level. 

RESULTS AND DISCUSSIONS 
Conidial density 

The conidial density of T. harzianum T10 varied 
significantly across different rice-washing water media 
(Table 1). Notably, glutinous rice washing water 
exhibited the highest conidial density at 66.02%, which 
was significantly greater than that observed in white rice 
washing water and the other rice washing media. This 
phenomenon is likely attributed to the higher nutrient 
content, particularly carbohydrates, present in glutinous 
rice washing water, which is essential for the growth of 
T. harzianum T10. This finding is consistent with the 
observations of Amrinola et al. (2021) and Ali and 
Hashim (2024), who noted that white glutinous rice 
contains a carbohydrate content of 68%, which is higher 
than that found in other rice varieties. Furthermore, 
Harman et al. (1991) suggested that T. harzianum 
produces a higher number of conidia when the media 
provide adequate nutrients. According to Muñiz-Paredes 
et al. (2017), the diversity in fungal conidial production is 
closely related to the type of media used and its nutrient 
content. 

Table 1. Conidial density of T. harzianum T10 in various 
rice washing water media 

Treatments 
Conidial density (× 106 
conidia mL-1 solution) 

White rice washing water 3.5±0.001 b 

Brown rice washing water 5.9±0.001 b 

Black rice washing water 4.0±0.001 b 

Glutinous rice washing 
water 

10.3±0.001 a 

ANOVA Sig.  0.041 

Remarks: Numbers followed by the same letter indicate no significant 
difference according to the HSD test with a 5% error rate. 

The production of conidia in Trichoderma harzianum 
can be stimulated by the presence of substantial 
amounts of carbohydrates (Rai and Tewari 2018). 
According to Ali and Hashim (2024), the growth of 
Trichoderma species relies on carbohydrates as their 
primary energy source. Furthermore, Legodi et al. (2023) 
noted that fungi grown in media with high cellulose 
content can be utilized to produce cellulase enzymes; 
however, both fungal growth and cellulase production 
may be inhibited if the sucrose and glucose 
concentrations in the media are too low. 

Incubation period analysis 
The results of the analysis (Table 2) indicated that the 

application of various rice-washing glasses of water 
significantly altered the incubation period compared to 
the control. Specifically, the application of all types of rice 
washing water resulted in delays of 3.66%, 35.58%, 
31.37%, and 40.34% in the incubation period of seedling 
damping-off, with glutinous rice washing water leading to 
the greatest delay. This enhanced delay is likely due to 
the high production of bioactive compounds in the crude 
secondary metabolites of T. harzianum T10, as 
suggested by the elevated conidia density (Table 1) 
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observed in this treatment compared to other rice 
washing waters. These bioactive compounds may inhibit 
the development of Pythium species and slow the 
penetration of fungal pathogens into plant tissues and 
seeds, thereby extending the incubation period. 

The production of secondary metabolites is closely 
correlated with the density of fungal conidia (Singh and 
Kumar 2023). As the density of fungal conidia in the 
solution increases, so does the production of secondary 
metabolites. This finding aligns with research by 
Soesanto et al. (2020), which indicates that higher 
densities of T. harzianum conidia in the media correlate 
with prolonged incubation periods. As a beneficial 
fungus, T. harzianum is frequently employed as a 
biological control agent to mitigate plant diseases and 
can indeed extend the incubation period of specific plant 
pathogens. Notably, Soesanto et al. (2019) confirmed 
that the administration of secondary metabolites derived 
from T. harzianum T10 can prolong the incubation period 
by up to 15 days compared to untreated controls. 

Trichoderma harzianum produces secondary 
metabolites that contain various bioactive compounds. 
These include the enzymes β-1,3-glucanase and 
chitinase, which have the ability to lyse the cell walls of 
pathogenic fungi, as well as other compounds such as 
glyoxin, viridin, and trichomidin, which inhibit the 
development of pathogenic fungi (Lakhdari et al. 2023). 
Furthermore, secondary metabolites can penetrate the 
tissues of cucumber seedlings due to their polar nature 

(Soesanto et al. 2019). Once these metabolites are 
absorbed into plant tissues, they can systemically 
promote plant resistance mechanisms, enhancing the 
plants' ability to withstand fungal pathogen infections 
(Zhou et al. 2023). 

Cucumber seeds infected by Pythium species exhibit 
altered symptoms, including changes in seed color and 
texture. The seed coat typically becomes blackish brown 
and adopts a soft texture (Toporek and Keinath 2021). 
This phenomenon is consistent with the findings of 
Roberts et al. (2021), which indicate that cucumber 
seeds affected by Pythium species initially display a 
blackish-brown discoloration on their surface, eventually 
leading to seed softening or rot (Figure 1a). In seedlings, 
symptoms manifest as brown discoloration and a soft 
texture in the radicle (Figure 1b), along with watery or oily 
lesions on the root (hypocotyl) (Figure 1c). 

In the absence of protection provided by the 
application of T. harzianum secondary metabolites, 
Pythium species infected cucumber seeds, resulting in 
symptoms of seed rot, particularly in seeds that had not 
yet emerged to the soil surface. The development of 
Pythium species is influenced by environmental factors 
such as soil moisture and temperature. According to Liu 
et al. (2020), high soil moisture significantly promotes the 
development and growth of Pythium species. 
Additionally, Bickel and Koehler (2021) noted that the 
optimum development of Pythium species is highly 
dependent on temperatures ranging from 25-36°C. 

Table 2. Metabolites effect of Trichoderma grown in rice washing water media on 
pathosystem components of Cucumber dumping off. 

Treatments 
Incubation 
period (dai) 

Disease 
incidence (%) 

AUDPC 
(%. days) 

Control 10.5±0.001 a 87±0.001 a 533±0.001 a 

White rice washing water 10.9±0.001 b 80±0.001 ab 397±0.001 ab 

Brown rice washing water 16.3±0.001 b 47±0.001 abc 210±0.001 bc 

Black rice washing water 15.3±0.001 b 60±0.001 bc 263±0.001 bc 

Glutinous rice washing 
water 

17.6±0.001 b 33±0.001 c 163±0.001 c 

Remarks: Numbers followed by the same letter in the same column show no significant difference in the HSD 
test at the 5% error level. Disease incidence data were transformed in arcsin √x + 0.5. dai= days after inoculation 

 
Note: Picture Documentation before the seed emerges on the soil surface. a. seed coat, b. radicle, 

and c. after emerging to the soil surface. 

Figure 1. Symptoms of cucumber damping off 
 

b a c 
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Disease incidence 
Statistical analysis revealed significant differences in 

disease incidence among the various rice washing water 
treatments (Table 2). The application of glutinous rice 
washing water, black rice washing water, brown rice 
washing water, and white rice washing water suppressed 
disease incidence by 62.07%, 31.03%, 46%, and 8.04%, 
respectively, compared to the control. Notably, glutinous 
rice washing water exhibited the highest suppression of 
seedling damping-off incidence, which corresponded 
with the longest delay in the incubation period. This can 
be attributed to the highest conidial density observed in 
glutinous rice washing water (Table 1), as high conidial 
densities are associated with increased production of 
bioactive compounds in secondary metabolites, thereby 
enhancing disease suppression (Soesanto et al. 2020). 

The control crops displayed the highest incidence of 
disease compared to other treatments, primarily due to 
the lack of protection provided by T. harzianum T10 
secondary metabolites. As a result, seeds were more 
rapidly infected by pathogens, and the crops lacked an 
effective resistance system to prevent pathogen infection 
(Saldaña-Mendoza et al. 2023). In contrast, the 
application of secondary metabolites of T. harzianum 
T10 from diverse rice-washing water substrates resulted 
in lower disease incidence, as these compounds 
inhibited pathogen development within the host plants. 
The secondary metabolites of T. harzianum contain 
enzymes such as chitinase, cellobiase, 1,3-β-glucanase, 
and cellulase, which can lyse the cell walls of pathogens, 
leading to the breakdown of pathogen cell walls and 
thereby delaying or inhibiting pathogen development 
(Markovich and Kononova 2003). Furthermore, the 
production of secondary metabolites utilizes water or 
polar materials, enabling these compounds to enter 
seeds through imbibition and subsequently increasing 
seed resistance while inhibiting pathogenic fungal 
infections (Zhou et al. 2023). 

Area Under Disease Progress Curve (AUDPC) value 
The disease progression curve can be utilized to 

calculate the Area Under the Disease Progress Curve 
(AUDPC) value, derived from the disease incidence data 
of plants over a specified time period (Simko and Piepho 
2012). The AUDPC values resulting from the application 
of secondary metabolites derived from various 
substrates exhibit variability, as illustrated in Figure 2. A 
higher incidence of disease in the plants correlates with 
an elevated AUDPC value (Bock et al. 2022). 

In accordance with Simko and Piepho (2012), the 
Area Under the Disease Progress Curve (AUDPC) is a 
parameter used to evaluate disease progression over 
time. Figure 2 illustrates the AUDPC results, which 
demonstrate significant differences among the 
treatments. Notably, the application of glutinous rice 
washing water yielded the smallest AUDPC value at 
69.41%, relative to the control (Table 2). This 
observation is consistent with conidial density (Table 1) 

as well as disease incidence and incubation period 
(Table 2). It is postulated that the application of T. 
harzianum T10 has an effect on disease development or 
AUDPC value. This assertion is corroborated by Bock et 
al. (2022), who noted that ineffective treatments will lead 
to an increase in the AUDPC value, whereas treatments 
with high efficacy will result in a low AUDPC value. 

The curve generated by the application of T. 
harzianum T10 secondary metabolites exhibits a slower 
disease development rate compared to the control, 
which demonstrates a faster disease development curve. 
Research by Saldaña-Mendoza et al. (2023) suggests 
that disease development in control plants is higher due 
to the absence of plant protection applications. 
Conversely, the application of secondary metabolite T. 
harzianum T10 in glutinous rice washing water substrate 
effectively protects seeds from Pythium sp. pathogen 
infection and results in a low AUDPC value. The 
application of secondary metabolites leads to a decrease 
in the AUDPC value because plants possess the ability 
to inhibit disease development through a systemic plant 
resistance mechanism (Zhou et al. 2023). A lower 
AUDPC value is indicative of reduced plant disease 
development and greater plant health (Bock et al. 2022). 

Crop height 
The data presented in Table 3 reveal a significant 

difference in crop height among the various rice washing 
water treatments relative to the control. The application 
of various rice washing water increases crop height by 
91.81% for glutinous rice washing water, 86.31% for 
brown rice washing water, 83.50% for black rice washing 
water, and 79.37% for white rice washing water, 
respectively, compared to the control. This increase in 
crop height is attributed to the inhibition of seedling 
crown and root rot development, as well as the presence 
of bioactive compounds, including hormones, in the 
secondary metabolites of T. harzianum T10, which 
stimulate crop growth. 

Role of Trichoderma harzianum in plant growth 
enhancement 

According to Contreras-Cornejo et al. (2024), 
Trichoderma harzianum is classified as a Plant Growth-
Promoting Fungus (PGPF) due to its ability to absorb 
nutrients and active minerals from the soil, thereby 
enhancing plant growth. Additionally, T. harzianum 
facilitates the breakdown of organic matter in the soil, 
rendering it more soluble and accessible for plant uptake 
(Zin and Badaluddin 2020). Vitti et al. (2022) reported 
that crown length can be significantly increased through 
the application of T. harzianum. Furthermore, (Li et al. 
2015) indicated that T. harzianum enhances the 
availability of key nutrients, including manganese (Mn), 
phosphorus (P), potassium (K), nitrogen (N), aluminum 
(Al), and iron (Fe), which contribute to improved plant 
growth. Therefore, when nutrients in the soil become 
more available due to the application of T. harzianum, 
plant growth can be expected to increase. 
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Table 3. Metabolites effect of Trichoderma grown in rice washing water media on cucumber seedlings 
growth components 

Treatments Crop height (cm) Crop fresh weight (g) Root length (cm) 

Control 1.13±0.001 b 0.84±0.001 c 1.19±0.001 c 

White rice washing water 5.48±0.001 ab 3.54±0.001 bc 9.71±0.001 b 

Brown rice washing water 8.28±0.001 ab 6.82±0.001 ab 14.23±0.001 b 

Black rice washing water 6.85±0.001 ab 5.30±0.001 bc 10.63±0.001 b 

Glutinous rice washing water 13.80±0.001 a 11.09±0.001 a 24.89±0.001 a 

Note: Numbers followed by the same letter in the same column show no significant difference in the HSD test with a 5% error 
rate 

Crop fresh weight 
Statistical analyses demonstrate that crop fresh 

weight exhibited significant differences among 
treatments involving various rice washing waters 
enriched with secondary metabolites from T. harzianum 
T10 (Table 3). The application of glutinous rice washing 
water resulted in a 92.42% increase in crop fresh weight, 
followed by black rice washing water at 84.15%, brown 
rice washing water at 87.68%, and white rice washing 
water at 76.27% compared to the control. These findings 
are consistent with crop height observations, suggesting 
that the application of secondary metabolites from T. 
harzianum T10 contributes to enhanced crop growth. 
Guo et al. (2022) supported this notion, indicating that 
the secondary metabolites of T. harzianum facilitate 
rapid photosynthesis and increased nutrient absorption 
by promoting root hair development, leading to greater 
fresh weights in treated plants compared to controls (Li 
et al. 2015). 

The highest crop fresh weight was recorded for the 
glutinous rice washing water treatment, showing an 
increase of 92.42% relative to the control, which aligns 
with the observed crop height (Table 3). The elevated 
fresh weight in this treatment likely results from the 
secondary metabolites produced by T. harzianum T10, 
which effectively break down soil nutrients, making them 
available for crop uptake and stimulating growth (Vitti et 
al. 2022). Healthy crop growth inherently contributes to 
increased fresh weight. 

Root length 
As shown in Table 3, the root length of cucumber 

crops revealed highly significant differences due to the 
application of various rice washing waters. The 
application of white rice washing water resulted in an 
increase in root length by 87.74%, while brown rice 
washing water enhanced root length by 91.63%, black 
rice washing water by 88.80%, and glutinous rice 
washing water by 95.21% compared to the control. The 
longest root length was observed with the application of 
glutinous rice washing water, correlating with increased 
crop height and fresh weight. This enhancement in root 
length is attributed to the presence of bioactive 
compounds in the secondary metabolites of T. 
harzianum T10, including growth regulators that promote 
root elongation and overall plant growth.  

Tyśkiewicz et al. (2022) noted that the potential of 
Trichoderma species can stimulate root growth, 

facilitating greater nutrient absorption, reducing 
pathogen populations, and providing protection against 
pathogen attacks. Guo et al. (2024) also highlighted that 
the application of T. harzianum can enhance root length 
in kidney beans. Moreover, Xiao et al. (2023) 
emphasized that plants can produce growth-stimulating 
hormones, such as gibberellins (GA3), indoleacetic acid 
(IAA), and benzylaminopurine (BAP), as the chemical 
compounds generated by T. harzianum can trigger 
substantial hormone production. According to Edelmann 
(2022), the presence of IAA can significantly enhance the 
growth of plant roots, including lateral, primary, and 
adventitious roots. 

CONCLUSIONS AND SUGGESTIONS 
Based on the findings from the conducted research, it 

can be concluded that glutinous rice washing water is the 
most effective growth medium for Trichoderma 
harzianum T10, exhibiting a conidial density of 10.3 × 106 
conidia.mL-1. The secondary metabolites from T. 
harzianum T10 present in glutinous rice washing water 
were the most effective in managing seedling crown and 
root rot. This treatment successfully delayed the 
incubation period, reduced disease incidence, and 
lowered the AUDPC value by 40.34, 62.07, and 69.41%, 
respectively, compared to the control. Moreover, 
glutinous rice washing water significantly enhanced crop 
growth, leading to increases in crop height, fresh weight, 
and root length by 91.81, 92.42, and 95.21%, 
respectively, when compared to the control. 
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