

ALCHEMY Jurnal Penelitian Kimia

Official Website: https://jurnal.uns.ac.id/alchemy

Efek Perbedaan Komposisi Komposit Na₂FeSiO₄/C Berbasis Silika Sekam Padi Terhadap Fasa dan Sifat Listriknya

(The Effect of Different Compositions of Rice Husk Silica-Based Na₂FeSiO₄/C Composites on Their Phase and Electrical Properties)

Agus Riyanto^{*}, Sutiarno Sutiarno, Nindya Aisah Indriyani, Wulan Warohmah, Silvi Indah Kusuma Wardani, Syafriadi Syafriadi, Pulung Karo Karo, Sri Wahyu Suciati

> Jurusan Fisika, FMIPA, Universitas Lampung Jalan Prof. Sumantri Brojonegoro 1 Bandar Lampung, 35145, Indonesia

*Corresponding author: agus.riyanto@fmipa.unila.ac.id

DOI: 10.20961/alchemy.19.2.65707.140-148

Received 25 September 2022 Revised 2 March 2023 Accepted 11 March 2023, Published 30 September 2023

Kata kunci:

energi celah pita; fasa; konduktivitas listrik; Na₂FeSiO₄/C; sekam padi.

ABSTRAK. Salah satu teknik yang digunakan untuk mengoptimasi sifat listrik dari Na2FeSiO4 ialah menambahkan grafit (C) menjadi komposit. Studi ini dilakukan untuk meninjau karakteristik fasa dan sifat listrik dari komposit Na₂FeSiO₄/C yang komposisinya bervariasi. Preparasi sampel diawali dari penyiapan Na₂FeSiO₄ dan dilanjutkan dengan pembuatan Na₂FeSiO₄/C. Na₂FeSiO₄ dipreparasi dari silika sekam padi, NaOH, Fe(NO₃)₃.H₂O, dan C₆H₈O₇.H₂O menggunakan metode sol-gel diikuti dengan proses sinter pada suhu 800 °C selama 10 jam. Bahan baku Na2FeSiO4, grafit, dan carboxy methyl cellulose (CMC) dengan variasi perbandingan massa dicampurkan dengan menambahkan n-metilpirrolidin hingga menjadi slurry, kemudian dikeringkan pada suhu 120 °C selama 1 jam dan menghasilkan komposit Na2FeSiO4/C. Spektrum FTIR mengindikasikan keberadaan gugus Na-O, Fe-O, Si-O, dan C=C. Difraktogram mendeteksi keberadaan 4 fasa di dalam setiap sampel yaitu Na2FeSiO4, Na2SiO3, SiO2, dan grafit (C). Fasa Na2FeSiO4 memiliki puncak difraksi dengan intensitas tertinggi dibanding dengan fasa yang lainya sehingga terindikasi kuat bahwa fasa tersebut ialah fasa utama. Fasa grafit semakin meningkat seiring dengan meningkatnya komposisi grafit di dalam sampel sebagaimana terkonfirmasi dari naiknya intensitas puncak difraksi dari fasa tersebut, serta ditandai dengan menurunnya nilai transmitansi pada bilangan gelombang yang berkaitan dengan gugus C=C. Meningkatnya fasa grafit dalam Na2FeSiO4/C berpengaruh terhadap penurunan energi celah pita dan berpengaruh signifikan terhadap peningkatan konduktivitas listrik.

Keywords:

band gap energy; phase; electrical conductivity; Na₂FeSiO₄/C; rice husk. **ABSTRACT.** One of the techniques used to optimize the electrical properties of Na₂FeSiO₄ is by adding graphite (C) to become a composite. This study was conducted to evaluate the phase characteristics and electrical properties of the Na₂FeSiO₄/C composite with various compositions. Sample preparation begins with the preparation of Na₂FeSiO₄ and continues with the preparation of Na₂FeSiO₄/C. Na₂FeSiO₄ was prepared from rice husk silica, NaOH, Fe(NO₃)₃·9H₂O, and C₆H₈O₇·H₂O using the sol-gel method, followed by sintering at 800 °C for 10 hours. Na₂FeSiO₄, graphite, and CMC with variations in the mass ratio were mixed by adding n-methylpyrolidine to make a slurry, then dried at 120 °C for 1 hour, resulting in Na₂FeSiO₄/C composites. The FTIR spectrum indicates the presence of Na–O, Fe–O, Si–O, and C=C groups. The diffractogram detects the presence of 4 phases in each sample, namely Na₂FeSiO₄, Na₂SiO₃, SiO₂, and graphite (C). The Na₂FeSiO₄ phase has a diffraction peak with the highest intensity compared to the other phases, so it is strongly indicated that this phase is the main phase. The graphite phase increases with increasing graphite composition in the sample, as confirmed by the increasing intensity of the diffraction peaks from the phase and by the decreasing transmittance value at the wavenumber associated with the C=C group. Increasing the graphite phase in Na₂FeSiO₄/C affects the decreasing band gap energy and has a significant effect on increasing electrical conductivity.

Cite this as: Riyanto, A., Sutiarno, Indriyani, N. A., Warohmah, W., Wardani, S. I. K., Syafriadi, Karo, P. K., & Suciati, S. W. 2023. Efek Perbedaan Komposisi Komposit Na₂FeSiO₄/C Berbasis Silika Sekam Padi Terhadap Fasa dan Sifat Listriknya. *ALCHEMY Jurnal Penelitian Kimia*, 19(2), 1-13. http://dx.doi.org/10.20961/alchemy.19.1.65707.140-148.

PENDAHULUAN

Baterai merupakan salah satu jenis peranti penyimpan energi listrik yang hingga kini terus dikembangkan oleh para peneliti. Baterai yang memiliki kapasitas penyimpanan, kestabilan termal, dan kestabilan kimiawi yang tinggi, serta ramah lingkungan masih terus dibuat dan dikembangkan. Performa baterai tidak terlepas dari komponen penyusunnya, seperti: katoda, anoda, elektrolit, dan separator (Linden *and* Reddy, 1995). Berdasarkan keempat komponen tersebut, katoda memainkan peran yang sangat penting dalam reaksi elektrokimia saat proses *charge/discharge* berlangsung sehingga performa baterai sangat ditentukan oleh komponen ini. Salah satu jenis bahan yang menarik minat para peneliti untuk dijadikan bahan katoda ialah *lithium iron silicate* (Li₂FeSiO₄). Keberadaan ikatan kovalen dalam struktur Li₂FeSiO₄ menyebabkan senyawa ini memiliki stabilitas termal dan kimiawi yang tinggi. Selain itu, terkandungnya 2 buah ion litium (Li) per unit formula dalam senyawa Li₂FeSiO₄ menyebabkan bahan ini dapat menghasilkan kapasitas penyimpanan yang tinggi (Wiriya *et al.*, 2021). Menurut Nyten *et al.* (2005), secara teroritis kapasitas baterai yang menggunakan katoda dari bahan Li₂FeSiO₄ dapat mencapai 330 mAh⁻¹. Namun, sumber unsur Li yang tidak cukup melimpah dapat menjadi salah satu hambatan dalam pengaplikasian Li₂FeSiO₄ sebagai bahan katoda dalam jangka yang panjang. Selain itu, bahan Li₂FeSiO₄ memiliki sisi lemah pada sifat listriknya. Bahan ini memiliki konduktivitas listrik yang sangat rendah ($10^{-14} - 10^{-8}$ S/m) dan energi celah pita sekitar 1,23 – 2,51 eV (Bianchini *et al.*, 2017; Liu, 2017).

Keadaan Li₂FeSiO₄ yang lemah terhadap sifat kelistrikannya menyebabkan para peneliti terdorong untuk membuat senyawa baru dengan cara menggantikan ion litium (Li) dengan ion natrium (Na) sehingga tercipta bahan yang memiliki formula Na₂FeSiO₄ (Diekman et al., 2017; Zhang et al., 2012). Ide penggantian ion litium (Li) dengan ion natrium (Na) tersebut didorong oleh fakta bahwa dalam sistem periodik, elemen Na berada dalam golongan yang sama dengan Li. Oleh sebab itu, keduannya memiliki karakteristik kimia dan fisika yang identik. Dengan demikian, sangat cocok jika posisi ion Li dalam Li₂FeSiO₄ digantikan dengan ion Na (Xie et al., 2020). Pemilihan elemen Na untuk menggantikan Li pada Li₂FeSiO₄ juga dilandasi oleh fakta bahwa ketersedian Na di alam sangat melimpah sehingga mendukung keberlangsungan penggunaan bahan Na₂FeSiO₄ sebagai katoda dalam jangka waktu yang panjang (Xu et al., 2022). Daerah migrasi ion Na lebih lebar dibanding Li yang disebabkan karena diameter ion Na lebih besar sehingga tegangan kerja pada bahan Na₂FeSiO₄ menjadi lebih rendah dari Li₂FeSiO₄ (Slater et al., 2013; Choi et al., 2017). Keadaan ini tentunya menjadi salah satu kelebihan bahan Na₂FeSiO₄ untuk dimanfaatkan sebagai katoda di masa mendatang. Meskipun secara teoritis baterai yang menggunakan bahan katoda Na₂FeSiO₄ hanya dapat menampung energi dengan kapasitas spesifik 278 mAhg⁻¹ (Guo et al., 2017), tetapi bahan Na₂FeSiO₄ memiliki kehantaran listrik yang lebih unggul. Penelitian yang kami lakukan sebelumnya berhasil mensintesis bahan Na2FeSiO4 yang nilai konduktivitas listriknya berada dalam orde 10⁻⁵ S/m (Rivanto et al., 2020).

Nilai konduktivitas listrik bahan dapat mempengaruhi kapasitas dan siklus hidup sebuah sel baterai. Bahan katoda yang memiliki nilai konduktivitas $10^{-7} - 10^{-2}$ S/m cukup potensial untuk dimanfaatkan sebagai katoda (Park *et al.*, 2010). Nilai konduktivitas dari sampel Na₂FeSiO₄ yang telah berhasil kami peroleh dalam penelitian sebelumnya masih berpeluang untuk ditingkatkan. Salah satu caranya adalah dengan menambahkan bahan konduktif seperti grafit. Grafit memiliki konduktivitas listrik yang cukup tinggi yaitu mencapai 10^4 S/m (Chung, 2002). Penambahan grafit pada bahan Na₂FeSiO₄ diyakini dapat meningkatkan jumlah aliran elektron bebas sehingga nilai konduktivitas listrik bahan tersebut meningkat (Rand *and* Briand, 2009). Oleh sebab itu, telaah mengenai efek komposisi grafit pada bahan komposit Na₂FeSiO₄/C terhadap fasa dan sifat listriknya dilakukan dalam studi ini. Sampel Na₂FeSiO₄ berbasis sekam padi dipreparasi dengan menerapkan metode yang telah diterapkan sebelumnya (Riyanto *et al.*, 2020). Sampel Na₂FeSiO₄/C dibuat dalam beberapa variasi komposisi Na₂FeSiO₄ dan grafit yang ditambahkan bahan pengikat karboksimetil selulosa (CMC) dan bahan pengencer n-metil-2-pirrolidin (NMP). Gugus fungsi dari sampel Na₂FeSiO₄/C diidentifikasi menggunakan TTIR, fasa dikarakterisasi menggunakan XRD, energi celah pita diidentifikasi menggunakan UV-Vis DRS, dan konduktivitas listrik diukur menggunakan LCR meter.

METODE PENELITIAN

Bahan yang digunakan untuk mempreparasi sampel Na₂FeSiO₄/C terdiri dari: sekam padi, akuades, HNO₃ (68%, Rp Chemical Product), Fe(NO₃)₃.9H₂O (99%, Merck), NaOH (90%, Rp Chemical Product), asam sitrat monohidrat (C₆H₈O₇.H₂O) (100%, Merck), grafit, karboksimetil selulosa (CMC), dan n-metilpirrolidin (NMP).

Ekstraksi Silika dari Sekam Padi

Sekam padi dibersihkan dari kotoran dengan direndam dalam air bersih selama satu jam dan kemudian dibilas. Selanjutnya, sekam direndam kembali mengunakan air panas dan dibilas hingga terbebas dari sisa kotoran. Sekam padi yang telah dibersihkan selanjutnya dikeringkan di bawah sinar matahari hingga kering. Proses ekstraksi silika pada penelitian ini mengacu pada penelitian kami sebelumnya (Riyanto *et al.*, 2020). Sebanyak 500 mL larutan NaOH 5% ditambahkan ke dalam 50 g sekam padi yang bersih dan kering dan dilanjutkan dengan pemanasan selama 30 menit hingga diperoleh sol silika. Sol tersebut diletakkan dalam ruang dengan suhu kamar dan tekanan atmosfer selama 24 jam, kemudian disaring untuk dipisahkan dari sekam yang telah terekstrak. Larutan HNO₃ 10% ditambahkan ke dalam sol setetes demi setetes hingga diperoleh gel yang memiliki pH 7. Langkah selanjutnya, gel tersebut dibersihkan menggunakan akuades, kemudian dikeringkan pada 110 °C hingga diperoleh padatan silika. Setelah itu, padatan tersebut digerus dan diayak menggunakan saringan 200 *mesh* hingga diperoleh serbuk silika amorf.

Preparasi Na₂FeSiO₄

Mengacu penelitian kami sebelumnya (Riyanto *et al.*, 2020), senyawa Na₂FeSiO₄ dipreparasi dari NaOH, Fe(NO₃)₃.9H₂O, SiO₂ dari sekam padi, dan C₆H₈O₇.H₂O dengan perbandingan mol masing-masing bahan baku berturut-turut ialah 2:1:1:1. Langkah awal untuk mempreparasi Na₂FeSiO₄ yaitu melarutkan 0,4 g NaOH ke dalam 10 mL akuades, 2,02 g Fe(NO₃)₃.9H₂O ke dalam 25 mL akuades, dan 2 g C₆H₈O₇.H₂O ke dalam 20 mL akuades. Setelah itu, sebanyak 0,3 g serbuk SiO₂ dilarutkan ke dalam larutan NaOH kemudian diaduk 30 menit pada suhu 60 °C menggunakan *hotplate magnetic stirrer*. Larutan campuran tersebut ditambahkan dengan larutan Fe(NO₃)₃.9H₂O dan larutan C₆H₈O₇.H₂O hingga diperoleh campuran yang memiliki pH 1. Campuran tersebut dimasukan ke dalam gelas beaker, kemudian diaduk pada suhu 80 °C. Campuran dari sistem refluks selanjutnya dituangkan ke dalam gelas beaker, kemudian digerus menggunakan mortar dan alu sampai diperoleh serbuk Na₂FeSiO₄. Serbuk tersebut dilakukan sintering pada suhu 800 °C dengan waktu tahan 10 jam pada suhu puncak, kemudian diayak menggunakan saringan 200 *mesh*.

Preparasi Komposit Na₂FeSiO₄/C

Sampel komposit Na₂FeSiO₄/C dibuat dari Na₂FeSiO₄, grafit, dan polimer CMC mengacu pada penelitian yang dilakukan oleh Guan *et al.* (2017). Komposisi masing-masing bahan baku dalam 4 buah sampel ditunjukkan pada Tabel 1. Proses pembuatannya dimulai dengan mencampur bahan Na₂FeSiO₄, grafit, dan CMC dengan pelarut NMP, dilanjutkan pengadukan hingga homogen menjadi bubur komposit (*slurry*). *Slurry* tersebut dikeringkan pada suhu 120 °C di dalam oven selama 1 jam, kemudian digerus sehingga menjadi serbuk. Sebagian sampel dibiarkan dalam bentuk serbuk dan sebagian sampel dipadatkan menjadi *pellet* agar dapat diuji untuk mengkarakterisasi gugus fungsi, fasa, energi celah pita, dan konduktivitas listriknya.

Sampel	Na ₂ FeSiO ₄ (%)	Grafit (%)	CMC (%)
А	90	0	10
В	80	10	10
С	75	15	10
D	70	20	10

Tabel 1. Komposisi sampel komposit Na₂FeSiO₄/C dalam perbandingan massa.

Karakterisasi Komposit Na₂FeSiO₄/C

Sampel komposit Na₂FeSiO₄/C dikarakterisasi menggunakan spektrofotometer FTIR dalam rentang bilangan gelombang 4000 – 400 cm⁻¹. Sampel dipreparasi dengan cara mencampurkan serbuk komposit Na₂FeSiO₄/C dan KBr, kemudian digerus, dan selanjutnya dijadikan *pellet*. Data hasil karakterisasi dianalisis dengan cara membandingkan spektrum FTIR yang diperoleh dari proses pengujian dengan beberapa spektrum FTIR dari hasil penelitian sebelumnya. Fasa yang berada di dalam sampel diidentifikasi menggunakan X'Pert Powder PW 30/40 XRD dengan jenis radiasi Cu-K α yang dioperasikan pada tegangan 40 kV dan kuat arus 30 mA dengan laju sudut putar difraktometer sebesar 0,02° per menit. Data difraksi dianalisis secara kuantitatif menggunakan perangkat lunak QualX versi 2.24 dan *crystallograpy open database* (COD) (Altomare *et al.*, 2008).

Sifat listrik pada sampel Na₂FeSiO₄/C yang terdiri dari energi celah pita dan konduktivitas dianalisis menggunakan DRS Shimadzu UV-2450 dan LCR meter HIOKI 3520-52. Energi celah pita diestimasi dari nilai reflektansi sampel yang diukur menggunakan UV-Vis DRS pada rentang bilangan gelombang 200 – 800 nm. Nilai energi celah pita dari setiap sampel komposit diestimasi menggunakan teorema Kubelka-Munk seperti Persamaan (1) dan *Tauc plot* seperti ditunjukkan pada Persamaan (2).

$$F(R_{\infty}) = \frac{K}{S} = \frac{(1-R_{\infty})^2}{2R_{\infty}}$$
(1)

$$[F(R_{\infty})hv]^2 = A(hv - E_g)$$
⁽²⁾

Keterangan:

 $F(R_{\infty})$ = fungsi Kubelka-Munk, K adalah koefisien absorbsi (m²/kg),

S = koefisien hamburan (m²/kg) $R_{\infty} =$ pemantulan difusi h = konstanta Plank 6,6×10⁻³⁴ kg/s A = konstanta proporsionalitas (J),

v =frekuensi (Hz)

 E_q =energi celah pita (eV).

Nilai energi celah pita ditaksir dengan menarik garis lurus (*gradien*) dari kurva $[F(R_{\infty})hv]^2$ terhadap hv. Sementara itu, nilai konduktivitas listrik diestimasi berdasakan nilai konduktasi sampel yang diukur pada rentang frekuensi 50 – 60 Hz. Nilai konduktivitas listrik sampel komposit dihitung menggunakan Persamaan (3).

$$\sigma = \frac{G \times L}{A} \tag{3}$$

Keterangan:

 σ = konduktivitas listik (S/m)

L = ketebalan sampel (m)

G = konduktansi (S)

A =luas penampang sampel (m²)

Hasil pengujian ini ditampilkan dalam grafik nilai konduktivitas listrik dalam fungsi frekuensi.

HASIL DAN PEMBAHASAN

Spektrum FTIR dari sampel komposit Na₂FeSiO₄/C ditunjukkan pada Gambar 1. Terbentuknya senyawa Na₂FeSiO₄ pada keempat sampel terindikasi dengan kemunculan puncak serapan yang berkaitan dengan vibrasi ulur dari gugus Na-O yang berasal dari ikatan [NaO₄] tetrahedral di area bilangan gelombang 493 – 478 cm⁻¹ (Rangasamy *et al.*, 2018). Selain itu, keberadaan senyawa Na₂FeSiO₄ juga dicirikan dengan kehadiran puncak serapan pada area bilangan gelombang 632 – 524 cm⁻¹ yang mencirikan keberadaan gugus Fe-O dengan tipe vibrasi ulur yang berasal dari [FeO₄] tetrahedral (Jain *et al.*, 2019). Pada spektrum FTIR tersebut juga terdeteksi munculnya puncak serapan pada area bilangan gelombang 872 – 857 cm⁻¹ yang mencirikan keberadaan gugus Si-O tipe vibrasi ulur dari ikatan [SiO₄] tetrahedral (Ghaffari *and* Behzad, 2018; Sheykhan *et al.*, 2017; Mahadevan *and* Du, 2018). Hasil identifikasi gugus fungsi ini selaras dengan penelitian yang dilakukan oleh Zhu *et al.* (2018) dan Riyanto *et al.*

(2022) yang juga mendapatkan puncak serapan yang berkaitan dengan gugus Na-O, Fe-O, dan Si-O pada sampel Na₂FeSiO₄ yang diuji.

Selain keberadaan puncak serapan yang berkaitan dengan gugus Na–O, Fe–O, dan Si–O, spektrum FTIR yang ditunjukkan pada Gambar 1 juga memperlihatkan kemunculan puncak serapan di area bilangan gelombang 1401 cm⁻¹. Puncak serapan tersebut mencirikan keberadaan gugus fungsi C–H dengan tipe vibrasi membengkok atau *bending* (Shoukat *et al.*, 2018). Gugus fungsi tersebut berasal dari polimer CMC yang digunakan sebagai bahan pengikat dalam pembuatan komposit Na₂FeSiO₄/C (Palani *et al.*, 2020). Gugus fungsi lain yang keberadaannya terdeteksi pada spektrum FTIR ialah gugus C=C. Pada sampel tanpa penambahan grafit (sampel A) terdapat puncak serapan di area bilangan gelombang 1528 cm⁻¹ yang diduga berasal dari lignin yang terlarut pada ekstrak silika sekam padi. Berdasarkan penelitian sebelumnya, gugus aromatik C=C dari lignin biasanya terdeteksi dengan kemunculan puncak serapan di area bilangan gelombang 1600 – 1512 cm⁻¹ (Ma'ruf *et al.*, 2017; Yefremova *et al.*, 2019).

Spektrum FTIR pada sampel B, C, dan D juga memperlihatkan keberadaan gugus C=C. Nilai transmitansi pada puncak serapan yang berkaitan dengan gugus C=C pada keempat sampel menunjukkan perbedaan yang cukup signifikan. Nilai transmitansi sampel A, B, C, dan D berturut-turut ialah 89%, 79%, 66%, dan 56%. Penurunan nilai transmitansi pada bilangan gelombang yang mengindikasikan keberadaan gugus C=C berkaitan erat dengan perubahan komposisi grafit di dalam sampel komposit Na₂FeSiO₄/C. Dengan demikian, penurunan nilai transmitansi yang berkaitan dengan gugus C=C berkorelasi dengan kadar grafit yang semakin meningkat di dalam sampel (Faniyi *et al.*, 2019). Gugus fungsi berikutnya yang terdeteksi dari pita serapan spektrum FTIR ialah gugus C=C yang dicirikan dengan munculnya puncak serapan di area bilangan gelombang 2094 – 2109 cm⁻¹ (Nandiyanto *et al.*, 2019). Menurut Begum *et al.* (2017), gugus fungsi C=C berasal dari gugus penyusun senyawa selulosa.

Gambar 1. Spektrum FTIR sampel komposit Na₂FeSiO4/C, (a) sampel A, (b) sampel B, (c) sampel C, dan (d) sampel D.

Salah satu produk turunan selulosa yang digunakan pada penelitian ini ialah CMC, sehingga gugus C≡C yang terdeteksi pada spektrum FTIR ini diyakini berasal dari CMC yang digunakan sebagai pengikat dalam pembuatan komposit Na₂FeSiO₄/C. Nilai transmitansi dari puncak serapan gugus ini juga cenderung mengalami penurunan. Nilai transmitansi yang berkaitan dengan gugus C≡C untuk sampel A, B, C, dan D berturut-turut adalah 94%, 86%, 75%, dan 67%. Hal ini diprediksi sebagai akibat distribusi CMC yang semakin merata di dalam sampel atau adanya kontribusi selulosa yang berada dalam grafit dengan jumlah yang semakin meningkat.

Difraktogram dan hasil analisis fasa pada setiap sampel ditunjukkan pada Gambar 2. Sebagaimana penelitian yang telah dilakukan sebelumnya (Riyanto *et al.*, 2020), data eksperimen dicocokan dengan *database* kristalografi Na₂CaSiO₄ dalam program QualX. Hal ini disebabkan karena data kristalografi dari Na₂FeSiO₄ tidak tersedia dalam COD, namun keduanya ialah fasa yang isostruktur (memiliki struktur yang sama) sehingga dapat dijadikan referensi

dalam analisis ini (Riyanto *et al.*, 2022). Hasil pencocokan antara data eksperimen dan *database* didapatkan fasa Na₂FeSiO₄ pada keempat sampel dengan puncak utama terletak pada sudut 20 sebesar 20,52°, disertai beberapa puncak difraksi pada 20 16,86°; 20,52°; 29,46°; dan 33,54° yang merupakan ciri khas indikasi keberadaan fasa tersebut (COD 00-101-0111). Hasil analisis ini sesuai dengan interpretasi spektrum FTIR yang mengungkap keberadaan gugus Fe–O, Si–O, dan Na–O di dalam sampel yang merupakan gugus penyusun struktur Na₂FeSiO₄. Hasil analisis kualitatif ini juga mengungkap keberadaan fasa Na₂SiO₃ di dalam sampel yang terkonfirmasi dengan kemunculan puncak difraksi difraktrogram 20 pada 25,12° dan 37,2° (COD 00-231-0858). Selain itu, pada difraktogram juga terdeteksi keberadaan fasa SiO₂ pada difraktogram yang ditandai dengan kemunculan puncak difraksi 20 pada 48,18°; 49,78°; 49,56°; dan 52,18° (COD 00-2434).

Gambar 2. Difraktogram dan hasil analisis fasa sampel komposit Na₂FeSiO₄/C, (a) sampel A, (b) sampel B, (c) sampel C, dan (d) sampel D.

Terbentuknya fasa sekunder (Na₂SiO₃ dan SiO₂) mengindikasikan bahwa energi termal yang diberikan tidak cukup membuat bahan baku habis bereaksi membentuk senyawa Na₂FeSiO₄. Difraktogram Gambar 2 juga memperlihatkan kemunculan puncak difraksi 2θ sebesar 26,56° pada sampel B, C, dan D. Berdasarkan analisis kualitatif, puncak tersebut menandakan keberadaan fasa grafit di dalam sampel (PDF 00-002-0456). Hasil tersebut selaras dengan hasil interpretasi spektrum FTIR yang mengungkap keberadaan gugus C=C. Puncak difraksi dari fasa grafit menunjukkan intensitas yang semakin meningkat seiring dengan tingginya kadar grafit dalam sampel. Terdeteksinya fasa Na₂FeSiO₄ dan grafit menunjukkan indikasi yang kuat terbentuknya komposit Na₂FeSiO₄/C di dalam sampel yang telah dipreparasi.

Tauc plot dari setiap sampel komposit Na₂FeSiO₄/C ditunjukkan pada Gambar 3. Pada Gambar 3 terlihat bahwa sampel A (sampel tanpa grafit) memiliki energi celah pita yang paling besar yaitu sekitar 2,20 eV seperti ditunjukkan pada Gambar 3(a). Hasil yang diperoleh ini sesuai dengan penelitian yang telah dilakukan sebelumnya dimana nilai energi celah pita dari sampel Na₂FeSiO₄ yang dilakukan *sintering* pada suhu 800 °C nilainya masih lebih besar dari 2,00 eV (Riyanto *et al.*, 2020). Keberadaan grafit berhasil memperkecil nilai energi celah pita seperti yang ditunjukkan pada *tauc plot* dari sampel B, C, dan D. Nilai energi celah pita dari sampel B, C, dan D berturut-turut memiliki energi celah pita sebesar 2,00 eV, 1,87 eV, dan 1,82 eV. Penurunan nilai energi celah pita ini berkaitan erat dengan perubahan keadaan celah energi karena hadirnya unsur karbon yang berasal dari grafit karena karbon memiliki elektron bebas (Rand *and* Briand, 2009). Menurunnya energi celah pita seiring dengan semakin tingginya kadar grafit dalam komposit Na₂FeSiO₄/C diikuti dengan semakin tingginya nilai konduktivitas listrik sampel dalam frekuensi 50 – 60 Hz dalam Gambar 4.

Gambar 3. Tauc plot sampel komposit Na₂FeSiO₄/C, (a) sampel A, (b) sampel B, (c) sampel C, dan (d) sampel D.

Sampel A memiliki konduktivitas listrik $1,49 \times 10^{-3} - 1,76 \times 10^{-3}$ S/m, sedangkan sampel B, C, dan D berturutturut memiliki konduktivitas listrik $2,37 \times 10^{-4} - 3,07 \times 10^{-3}$ S/m, $3,12 \times 10^{-4} - 3,79 \times 10^{-3}$ S/m, dan $7,68 \times 10^{-4} - 8,69 \times 10^{-3}$ S/m. Estimasi energi celah pita dan konduktivias listrik mengonfirmasi bahwa penambahan grafit berpengaruh cukup signifikan pada nilai energi celah pita dari sampel Na₂FeSiO₄/C. Sifat grafit yang konduktif berhasil menurunkan energi celah pita dan meningkatkan konduktivitas listrik Na₂FeSiO₄/C yang sebanding dengan kadar grafit di dalam komposit tersebut. Nilai konduktivitas listrik dari sampel memperlihatkan Na₂FeSiO₄/C berbasis silika sekam padi ini memiliki potensi yang sangat baik untuk dijadikan sebagai katode karena pada umumnya bahan katoda baterai memiliki nilai konduktivitas $10^{-7} - 10^{-2}$ S/m (Park *et al.*, 2010).

Gambar 4. Konduktivitas listrik sampel Na₂FeSiO₄/C pada rentang frekuensi 50 – 60 Hz, (a) sampel A, (b) sampel B, (c) sampel C, dan (d) sampel D.

KESIMPULAN

Hasil analisis menunjukkan bahwa fasa di dalam sampel sangat dipengaruhi oleh komposisi dari komposit Na₂FeSiO₄/C. Peningkatan kadar grafit dalam komposisi Na₂FeSiO₄/C berpengaruh signifikan terhadap sifat listriknya. Berdasar estimasi dan pengukuran diperoleh hasil bahwa energi celah pita dari komposit Na₂FeSiO₄ menurun linier dan konduktivitas listriknya meningkat linier sebanding dengan komposisi grafit di dalam sampel.

KONFLIK KEPENTINGAN

Tidak ada konflik kepentingan dalam artikel ini.

KONTRIBUSI PENULIS

AR: Koseptualisasi, Analisis Data, Akuisisi Pendanaan, Metodologi, Penulisan Draf Manuskrip, Supervisi, Telaah dan Penyuntingan Manuskrip; SS: Eksperimen, Analisis Data, Penulisan Draf Manuskrip, Administrasi; NAI: Eksperimen, Analisis Data; WW: Eksperimen, Analisis Data, Administrasi; SIKW: Eksperimen, Analisis Data; SS: Koseptualisasi, Metodologi, Supervisi; PKK: Koseptualisasi, Metodologi, Supervisi; SWC: Koseptualisasi, Metodologi, Supervisi.

UCAPAN TERIMAKASIH

Kami mengucapkan terima kasih yang sebesar-besarnya kepada Universitas Lampung yang telah memberikan dukungan dana untuk penelitian ini melalui hibah penelitian dasar dengan nomor kontrak 654/UN26.21/PN/2022.

DAFTAR PUSTAKA

- Altomare, A., Cuocci, C., and Giacovazzo C., 2008. QUALX: A Computer Program for Qualitative Analysis using Powder Diffraction Data. *Journal of Applied Crystallography*, 41, 815–817. https://doi.org/10.1107/S0021889808016956.
- Begum, H. A., Howlader, R. Md., Siddique, A. B., and Khan, A. N., 2017. Investigation of Functional Properties Changing in Different Chemical Treatments of Various Cellulosic Fibers Using FTIR. *Original Research Article Saudi Journal of Engineering and Technology*, 2(7), 280–285. https://doi.org/10.21276/sjeat.
- Bianchini, F., Fjellvåg, H., and Vajeeston, P., 2017. First-Principles Study of The Structural Stability and Electrochemical Properties of Na₂MSiO₄ (M = Mn, Fe, Co and Ni) Polymorphs. *Physical Chemistry Chemical Physics*, 19(22), 14462–14470. https://doi.org/10.1039/c7cp01395g.
- Choi, J., Kim, N. R., Lim, K., Ku, K., Yoon, H. J., Kang, J. G., Kang, K., Braun, P. V., Jin, H. J., and Yun, Y. S., 2017. Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries. *Small*, 3(30), 1–8. https://doi.org/10.1002/smll.201700767.
- Chung, D. D. L., 2002. Review: Graphite. *Journal of Materials Science*, 37(8), 1475–1489. https://doi.org/10.1023/A:1014915307738.
- Diekmann, J., Hanisch, C., Froböse, L., Schälicke, G., Loellhoeffel, T., Fölster, A.-S., and Kwade, A., 2017. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. *Journal of The Electrochemical Society*, 164(1), A6184–A6191. http://dx.doi.org/10.1149/2.0271701jes.
- Faniyi, I. O., Fasakin, O., Olofinjana, B., Adekunle, A. S., Oluwasusi, T. V., Eleruja, M. A., and Ajayi, E. O. B., 2019. The Comparative Analyses of Reduced Graphene Oxide (RGO) Prepared Via Green, Mild and Chemical approaches. SN Applied Sciences, 1(10), 1–7. https://doi.org/10.1007/s42452-019-1188-7.
- Ghaffari, A., and Behzad, M., 2018. Facile Synthesis of Layered Sodium Disilicates as Efficient and Recoverable Nanocatalysts for Biodiesel Production from Rapeseed Oil. Advanced Powder Technology, 29(5), 1265–1271. http://dx.doi.org/10.1016/j.apt.2018.02.019.
- Guan, W., Pan, B., Zhou, P., Mi, J., Zhang, D., Xu, J., and Jiang Y., 2017. A High Capacity, Good Safety and Low Cost Na₂FeSiO₄-based Cathode for Rechargeable Sodium-ion Battery. *Applied Materials & Interfaces Metals*, 9(27), 22369–22377. https://doi.org/10.1021/acsami.7b02385.
- Guo, S. P., Li, J. C., Xu, Q. T., Ma, Z., and Xue, H. G., 2017. Recent Achievements on Polyanion-type Compounds for Sodium-ion Batteries: Syntheses, Crystal Chemistry and Electrochemical Performance. *Journal of Power Sources*, 361, 285–299. https://doi.org/10.1016/j.jpowsour.2017.07.002.
- Jain, R., Luthra, V., Arora, M., and Gokhale, S., 2019. Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles. *Journal of Superconductivity and Novel Magnetism*, 32(2), 325– 333. https://link.springer.com/article/10.1007/s10948-018-4717-5.
- Linden, D. and Reddy, T. B. 1995. Handbook of Batteries, Choice Reviews Online. https://doi.org/10.5860/choice.33-2144.
- Liu, Y. 2017. The Development History of Cathode and Anode Materials of Lithium Ion Battery. Advances in

Computer Science Research, 76, 1399–1402. https://doi.org/10.2991/emim-17.2017.279.

- Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R., 2019. How to Read and Interpret FTIR Spectroscope of Organic Material. *Indonesian Journal of Science and Technology*, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806.
- Ma'ruf, A., Pramudono, B., and Aryanti, N., 2017. Lignin Isolation Process from Rice Husk by Alkaline Hydrogen Peroxide: Lignin and Silica Extracted. AIP Conference Proceedings, 1823(November). https://doi.org/10.1063/1.4978086.
- Mahadevan, T. S., and Du, J., 2018. Evaluating Water Reactivity at Silica Surfaces Using Reactive Potentials. *Journal of Physical Chemistry C*, 122(18), 9875–9885. http://dx.doi.org/10.1021/acs.jpcc.7b12653.
- Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T., and Thomas, J. O., 2005. Electrochemical Performance of Li₂FeSiO₄ as A New Li-battery Cathode Material. *Electrochemistry Communications*, 7(2), 156–160. https://doi.org/10.1016/j.elecom.2004.11.008.
- Palani, S., Jambulingam, R., Mohanam, A., and Srinivasan, G. R., 2020. Synthesis and Characterisation of Carboxymethyl Cellulose Based Bentonite Polymer Blend. *International Journal of Recent Technology and Engineering*, 8(5), 5661–5664. https://doi.org/10.35940/ijrte.E6772.018520.
- Park, M., Zhang, X., Chung, M., Less G. B., and Sastry, A. M., 2010. A Review of Conduction Phenomena in Liion Batteries. *Journal of Power Sources*, 195(24), 7904–7929. https://doi.org/10.1016/j.jpowsour.2010.06.060.
- Rand, and Briand, 2009. Graphite: Structure, Properties, and Manufacture. University of Pretoria.
- Rangasamy, V. S., Thayumanasundaram, S., and Locquet, J., 2018. Solvothermal Synthesis and Electrochemical Properties of Na₂CoSiO₄ and Na₂CoSiO₄/Carbon Nanotube Cathode Materials for Sodium-ion Batteries. *Electrochimica Acta*, 276, 102–110. https://doi.org/10.1016/j.electacta.2018.04.166.
- Riyanto, A. Suprihatin, Syafriadi, Sembiring, S., Sari, N., Suhesti, E.Y., Rezeki, S.K., and Almusawi, R., 2022. Effect of Thermal Treatment on The Phase Formation And Electrical Properties of Rice Husk Silica Based Na₂Fesio₄ Precursors. *Ceramics – Silikaty*, 66(1), 95–103. https://doi.org/10.13168/cs.2022.0004.
- Riyanto, A., Sembiring, S., Amalia, A. R., Astika, A., and Marjunus, R. 2020., A Preliminary Study of Phases, Elemental Mapping, and Electrical Properties on Na₂FeSiO₄ Derived from Rice Husk Silica. *Journal of Physics: Conference Series*, 1572(1). https://doi.org/10.1088/1742-6596/1572/1/012003.
- Sheykhan, M., Yahyazadeh, A., and Ramezani, L., 2017. A Novel Cooperative Lewis Acid/BrØnsted Base Catalyst Fe₃O₄@SiO₂-APTMS-Fe(OH)₂: An Efficient Catalyst for The Biginelli Reaction. *Molecular Catalysis*, 435, 166–173. https://doi.org/10.1016/j.mcat.2017.03.032.
- Shoukat, T., and Yoo, P. J., 2018. Rheology of Asphalt Binder Modified with 5W30 Viscosity Grade Waste Engine Oil. *Applied Sciences (Switzerland)*, 8(7), 1–19. https://doi.org/10.3390/app8071194.
- Slater, M. D., Kim, D., Lee, E., and Johnson, C. S., 2013. Sodium-ion Batteries. *Advancedes Functional Materials*, 23(8), 947–958. https://doi.org/10.1002/adfm.201200691.
- Wiriya, N., Kanaphan, Y., Hongtong, R., Kaewmala, S., Nash, J., Limphirat, W., Srilomsak, S., Thipthanaratchaphong, N., and Meethong, N., 2021. A Review of Current Rate-dependent Phase Transformations of Lithium Metal Orthosilicate Cathode Materials for Li-ion Batteries. *Electrochemical Science Advances*, 1–17. https://doi.org/10.1002/elsa.202100135.
- Xie, F., Xu, Z., Guo, Z., Titirici, and Magdalena, M., 2020. Hard Carbons for Sodium-ion Batteries and Beyond. *Progress in Energy*, 2(4), 1–30. https://doi.org/10.1088/2516-1083/aba5f5.
- Xu, H., Yan, Q., Yao, W., Lee, C. S., and Tang, Y., 2022. Mainstream Optimization Strategies for Cathode Materials of Sodium-Ion Batteries. *Small Structures*, 3(4), 1–19. https://doi.org/10.1002/sstr.202100217.
- Yefremova, S., Zharmenov, A., Sukharnikov, Y., Bunchuk, L., Kablanbekov, A., Anarbekov, K., Kulik, T., Nikolaichuk, A., and Palianytsia, B., 2019. Rice Husk Hydrolytic Lignin Transformation in Carbonization Process. *Molecules*, 24(17). https://doi.org/10.3390/molecules24173075.
- Zhang, P., Hu, C. H., Wu, S. Q., Zhu, Z. Z., and Yang, Y., 2012. Structural Properties and Energetics of Li₂FeSiO₄ Polymorphs and Their Delithiated Products from First-principles. *Physical Chemistry Chemical Physics*, 14(20), 7346–7351. https://doi.org/10.1039/c2cp40811b.
- Zhu, L., Zeng, Y. R., Wen, J., Li, L., and Cheng, T. M., 2018. Structural and Electrochemical Properties of Na₂FeSiO₄ Polymorphs for Sodium-Ion Batteries. *Electrochimica Acta*, 292, 190–198. https://doi.org/10.1016/j.electacta.2018.09.170.