

ALCHEMY Jurnal Penelitian Kimia

Laman resmi: https://jurnal.uns.ac.id/alchemy

A New Limonoid from the Seeds of Chisocheton lasiocarpus (Meliaceae)

Ronauli Fitriana^a, Nurlelasari Nurlelasari^a, Darwati Darwati^a, Desi Harneti^a, Rani Maharani^{a,b}, Tri Mayanti^a, Unang Supratman^{a,b}

^a Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia ^b Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Indonesia.

*Corresponding author: nurlelasari@unpad.ac.id

DOI: 10.20961/alchemy.17.2.44782.219-226

Received 11 October 2020, Accepted 08 June 2021, Published 09 September 2021

Keywords: limonoids; chisocheton; lasiocarpines; 14β,15βepoxynimonol. ABSTRACT. A New Limonoid from the Seeds of *Chisocheton lasiocarpus* (Meliaceae). *Chisocheton* is one of Meliaceae genus, which has about 53 species spreading in subtropical and tropical regions. One of the species is *Chisocheton lasiocarpus*. *Chisocheton* is rich in limonoids that have various biological activities such as anticancer, antimalarial, anti-inflammatory, antifeedant, antiviral, neuroprotective, and antimicrobial properties. This study aims to isolate limonoids from the seeds of *C. lasiocarpus*, and determine the structures. The dry powder of seeds of *C. lasiocarpus* (203.75 g) was macerated with subsequent *n*-hexane, ethyl acetate, and methanol. Extract of ethyl acetate was separated and purified using chromatography methods until a new limonoid, lasiocarpies (1) and one known limonoid, 14β,15β-epoxynimonol (2) were obtained. The purification process was guided by Ehrlich reagent. The chemical structures were identified by UV, IR, ¹H-NMR, ¹³C-NMR, 2D NMR, and mass spectrometry.

INTRODUCTION

Limonoids are triterpenoid compounds which degrade on their four carbon side chains. This group of compounds has various biological properties including insecticidal, antibacterial, antimalarial, antiviral, antifungal, and anticancer activities (Mohamad et al., 2009). This group of compounds is found in the Meliaceae family, including in the Chisocheton genus (Shilpi et al., 2016). Chisocheton is a genus of the Meliaceae family which contains approximately 53 species spreading in India, Thailand, Malaysia, and Indonesia (Nurlelasari et al., 2017). Several limonoids were found in C. siamensis, C. paniculatus, C. microcarpus, C. ceramicus, C. erythrocarpus, C. cumingianus subsp. balansae, C. macrophyllus, and C. pentandrus (Shilpi et al., 2016; Nurlelasari et al., 2017 and Supriatno et al., 2018). Limonoid types that have been isolated from the Chisocheton genus include havanensin (Nurlelasari et al., 2017; Laphookhieo et al., 2008; Supriatno et al., 2018; Hoai et al., 2018), phragmalin (Najmuldeen et al., 2011; Chong et al., 2012) 30nor trijugine (Katja et al., 2016), mexicanolide (Awang et al., 2007), and vokensin (Yang et al., 2009). One of the Chisocheton species that has not been widely explored for its secondary metabolite content is C. lasiocarpus. Until now, there are only two phytochemicals of C. lasiocarpus isolated from this plant, namely stigmast-5 (6) -en-3β-ol (Nurlelasari et al., 2018) and lasiocarpon that showed moderate cytotoxic activity against MCF-7 breast cancer cell with an IC₅₀ value of 42.5 mM (Hidayat et al., 2018). In this study we successfully isolated one new limonoid compound from C. lasiocarpus seeds, having unusual side chains and one known havanensin-type limonoid.

EXPERIMENTAL

In this study we used the seeds of *C. lasiocarpus*, which were collected in Bogor Botanical Garden, Bogor, West Java Province, Indonesia.

General experimental procedures

UV (*ultraviolet*) spectra were measured on a TECAN Infinite M200 pro, with MeOH. The IR spectra were recorded on a Perkin Elmer spectrum-100 FT-IR (*fourier transform infrared*) in KBr. Mass spectra were

obtained with a Water Xevo QTOF mass spectrometer instrument. ¹H and ¹³C NMR (*nuclear magnetic resonance*) spectra were obtained with a JEOL JNM A-500 spectrometer using TMS (tetramethylsilane) as internal standard. Chromatographic separations were carried out on silica gel 60 (Merck). TLC plates were precoated with silica gel GF254 (Merck, 0.25 mm). The detection of the compounds on TLC plates was achieved under UV light at 254 and 367 nm and by spraying the plates with dimethylaminobenzaldehyde in 10% H₂SO₄ in ethanol (Ehrlich's reagent) followed by heating.

Extraction and Isolation

C. lasiocarpus seed powder (203.5 g) were extracted successively with *n*-hexane, ethyl acetate, and methanol. The ethyl acetate extract (20 g) was separated on a silica gel vacuum-liquid chromatography (VLC) column eluted with an *n*-hexane-ethyl acetate stepwise gradient to afford ten fractions (A-J). Fraction H (1.65 g) was chromatographed using the same composition of solvents to give five subfractions (H1-H5). Then, subfraction H5 (301.8 mg) was purified using *n*-hexane:dichloromethane:ethyl acetate (5:4:1) until a new limonoid **1** was obtained. Fraction E (82.4 mg) was fractionated on silica gel column using *n*-hexane:ethyl acetate (8:2) to give **2**.

RESULTS AND DISCUSSION

Figure 1. ¹H-NMR spectrum of **1**(500 MHz in acetone-*d*).

Compound 1 (36.5 mg) was identified as white amorphous powder that can be dissolved in acetone. Its molecular formula, $C_{30}H_{39}O_6N$, was established from the quasi-molecular ion peak at m/z 510.2312 [M + H]⁺ (calcd. m/z for $C_{30}H_{40}O_6N$, 510.2401) in the HRTOFMS (*high-resolution time-of-flight mass spectrometry*), suggesting that 1 has twelve degrees of unsaturation. The UV spectrum showed two absorption maximum at 228 nm dan 254 nm ($\pi \rightarrow \pi^*$ electronic transition). IR peaks revealed the presence of hydroxyl group at 3447 cm⁻¹, α , β -unsaturated carbonyl at 1670 cm⁻¹, an ester at 1735, and gem dimethyl at 1385 cm⁻¹ as twin bands.

¹H-NMR spectrum of compound **1** (Figure 1, Table 1) revealed five tertiary methyls ($\delta_{\rm H}$ 1.02, 1.19, 1.29, each 3H and 1.10 6H), two methyls of the ester group at $\delta_{\rm H}$ 1.94 and 2.10 ppm (each 3H), three oxygenated methine protons at $\delta_{\rm H}$ 3.03 (1H, bs), 4.34 (1H; t); and 5.34 (1H, d) and five sp² methines at $\delta_{\rm H}$ 7.25 (1H, s), 7.27 (1H, s), 5.74 (1H; d); and 5.85 (2H, d)]. The combination of ¹³C-NMR and DEPT (distortionless enhancement by polarization transfer) (Figure 2) spectra showed 30 carbon signals including carbonyl at $\delta_{\rm C}$

7.27 (1H, s), 5.74 (1H; d); and 5.85 (2H, d)]. The combination of ¹³C-NMR and DEPT (distortionless enhancement by polarization transfer) (Figure 2) spectra showed 30 carbon signals including carbonyl at $\delta_{\rm C}$ 204.4 ppm, five methyls at $\delta_{\rm C}$ 17.5, 20.7, 21.4, 27.8, and 32.3 ppm, two acetyl groups at $\delta_{\rm C}$ 21.9 (C-1'), 21.8 (C-1"), 171.5 (C-2') and 170.2 (C-2") ppm, three methylenes at $\delta_{\rm C}$ 24.7, 26.3, and 43.1 ppm, three *sp*³ methines at $\delta_{\rm C}$ 47.3, 62.0 and 81.7 ppm, five *sp*² methines at $\delta_{\rm C}$ 125.9, 126.1, 126.3, 159.3, and 159.6 ppm, three oxygenated methines at $\delta_{\rm C}$ 70.9, 76.7, and 81.7 ppm, and seven quaternary carbons at $\delta_{\rm C}$ 41.3, 45.5, 47.8, 58.6, 160.0, 162.0, and 167 ppm.

Figure 3. ¹H-NMR spectrum (500 MHz in CDCl₃) of 2.

The skeleton type and position of each functional group were determined using 2D NMR. ¹H-¹H COSY (*correlation spectroscopy* ¹H-¹H) spectrum indicated by the correlations between H-1/H-2, H-6/H-7, H-11/H-9/H-12, H-16/H-17, and H-22/H-23 shows that **1** has an intact limonoid skeleton, the havanensin type. The presence of two acetyl groups and the determination of their positions were suggested through the correlations between H-1/C-1"/C-12 and H-2'/C-2"/C-11. Then, the correlations between H-16/C-20, H-17/C-22, H-21/C-23 ($\delta_{\rm H}$ 81,7 ppm) indicate that the limonoid side chain forms a dihydrolactam ring. The orientation of two acetyls was deduced by the NOESY (*nuclear overhauser enhancement spectroscopy*) correlations of H-11/H-29/H-30 and H-12/H-29.

The chemical shift of 1 has similarities with the chemical shift of the 6α , 7α -diacetoxy-3-oxo-24,25,26,27tetranorapotirucalla-1,14,20(22)-trien-21,23-lactam (3) (Figure 6), which was isolated from *C. paniculatus* fruit, obtained from Vietnam (Hoai *et al.*, 2018). The difference between 1 and 3 is in the acetyl groups position. Compound 3 contains two acetyl groups at C-6 and C-7, while compound 1 has two acetyl groups at C-11 and C-12 positions. There is also an olefinic group between C-5 and C-6 in the structure. In addition to that, the side chain of compound 3 is a lactam ring, while compound 1 has a dihydrolactam ring. This causes the chemical shift value of C-20 of compound 3 lower than the chemical shift of C-20 of compound 1. A comparison of the spectroscopic data for compounds 1 and 3 is shown in Table 1.

Figure 5. Selected ¹H-¹H COSY and HMBC correlations for 1 and 2.

Figure 6. Structure of 6α,7α-diacetoxy-3-oxo-24,25,26,27-tetranorapotirucalla-1,14,20(22)-trien-21,23-lactam (**3**) (Hoai *et al.*, 2018).

Compound **2** (6 mg) was identified as a white amorphous powder that can be dissolved in chloroform. Its molecular formula, $C_{30}H_{39}O_6N$, was established from the quasi-molecular ion peak at m/z 469.2383 [M+H]⁺, (calcd. m/z for $C_{28}H_{37}O_6$ 469.2390) in the HRTOFMS suggesting that **2** has eleven degrees of unsaturation. ¹H-NMR spectrum of compound **2** (Table 2) indicated five tertiary methyls ($\delta_H 0.95$, 1.22, 1.24 (3H, s), 1.05 (6H, s), one methyl of ester at $\delta_H 2.05$ ppm (each 3H), two oxygenated methine protons at $\delta_H 3.42$ (1H, s) dan 4.75 (1H, t, J=2.7) and five sp^2 methines at $\delta_H 5.84$ (1H, d, J=10.3 Hz), 6.15 (1H, s); 7.09 (1H, s), 7.18 (1H, s), and 7.35 (1H, s). The combination of ¹³C-NMR and DEPT spectra revealed 28 carbon signals including carbonyl at $\delta_C 206.1$ ppm, five methyls at $\delta_C 19.3$, 20.1, 21.8, 22.0, and 31.1 ppm, one acetyl groups at $\delta_C 21.6$ (C-1'), and 171.9 (C-2') ppm, three methylenes at $\delta_C 16.6$, 29.6, and 32.2 ppm, two sp^3 methines at $\delta_C 39.0$, 50.4, three oxygenated methines at $\delta_C 57.5$, 68.8 and 77.8 ppm, five sp^2 methines at $\delta_C 111.0$, 126.3, 139.7, 143.0, and 157.8 ppm, and six quaternary carbons at $\delta_C 40.3$, 41.9, 43.0, 45.7, 73.1, and 123.7 ppm.

Compour	nd 1	- 6a 7a diacotoxy	8 ava 24 25 26 27 tatranaranatirucalla 1 14 20(22)
dcNM	dNMD	ou,/u-ulaceloxy-	-0x0-24,25,20,27-icti anoi apoin ucana-1,14,20(22)-
R	UHININ		ti ieli-21,25-lactalli (5)
159.3	7.25 (s)	157.4	7.14 (d, 10.0)
125.9	5.85 (d, 10.4)	126.1	5.91 (d,10.0)
204.4	-	204.6	-
45.5	-	45	-
162	-	48.1	2.50 ^{<i>a</i>} (d, 11.0)
126.1	5.74 (d, 1.8)	70	5.43 (dd, 11.0, 2.0)
26.3	1.01 (m)	74.4	5.45 (d; 2.0)
47.8	-	43.2	-
47.3	2.64 (d, 12,4)	37.2	2.24 ^{<i>a</i>} (dd, 11.0; 7.0)
41.3	-	40.9	-
70.9	5.34 (dd, 2.3, 12.6)	16.5	1.90 (m), 1.72 (m)
76.7	6.08 (d, 2.3)	32.7	2.05 (m), 1.81 (m)
58.6	-	47.1	-
167	-	158.1	-
159.6	7.27 (s)	119.4	5.36 (d, 2.0)
24.7	3.54 (dd, 1.9, 13.2)	34.1	2.50 ^{<i>a</i>} (m), 2.24
62	2.79 (m)	50.9	2.85 (dd, 6.0, 2.5)
17.5	1.02 (s)	21	0.86 (s)
32.2	1.19 (s)	20.8	1.18 (s)
160	-	139.4	-
43.1	2.23, 2.29	174.6	-
126.3	5.85 (d, 10.4)	139.9	6.5 (t, 1.0)
81.7	4.34 (d, 8.6)	46.4	3.98 (brs)
27.8	1.29	31.7	1.26 (s)
21.4	1.1	20.5	1.18 (s)
20.7	1.1	26.9	1.33 (s)
21.9	2.1	170.2	-
171.5	-	21.4	2.04
21.8	1.94	170.1	-
170.2	-	21.2	2.01

Table 1. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of 1 and 3 in acetone-*d* (Hoai *et al.*, 2018).

140 150 on any in an al

The skeleton type and position of each functional group were determined using 2D NMR (Figure 5). ¹H-¹H COSY spectrum indicates the correlations between H-1/H-2, H-5/H-6/H-7, H-11/H-12, H-16/H-17, and H-22/H-23 showing that **2** has an intact limonoid skeleton, the havanensin type. The presence of one acetyl groups, one hydroxyl group, and their positions were suggested by correlations between H-1'/C-2'/C-7 H-7/C-5/C-6/C-9 and H-6/C-5. The orientation of the hydroxyl group was deduced by the NOESY correlation of H-6/H-18. The chemical shift comparison with the chemical shifts of 14 β ,15 β -epoxynimonol [12], **2** was identified as the known 14 β ,15 β -epoxynimonol (Govindachari *et al.*, 1999).

Compound 2	14p,15p-epoxynimonol			
¹ H -NMR	¹³ C-NMR	¹ H -NMR	¹³ C-NMR	
δ _H ppm (ΣH; mult; <i>J</i> =Hz)	δ С ррm	δн ppm (ΣН; mult; <i>J</i>=Hz)	δ _C ppm	
7.10 (1H, d, 10.1)	157.8	7.12 (1H, d, 9,9)	157.6	
5.90 (1H, d, 10.1)	126.3	5.92(1H, d, 9.9)	126,26	
-	206.1	-	205.84	
-	40.3	-	40.28	
2.22 (1H, d, 11.7)	50.4	2.22 (1H, d, 11.69)	50.41	
4.27 (1H, dd, 2.8, 11.7)	68.8	5.40 (1H, dd, 11.61, 3.04)	68.73	
4.91 (1H, d, 2.8)	77.8	4.93 (1H, d, 2.63)	77.74	
-	43	-	42.92	
2.58 (1H, m)	39	2.62 (1H, m)	39.04	
-	41.9	-	41.87	
1.23 (1H, m), 1.30 (1H, m)	29.9	1.86 (2H, m)	29.31	
-	45.7	-	45.68	
-	73.1	-	73.03	
3.46 (1H, s)	57.5	3.49 (1H, s)	57.38	
1.28 (1H, s), 1.30 (1H, m)	32.2	1.60 (1H. m), 2.13 (1H.m)	32.13	
2.18 (1H, m)	40.3	2.62 (1H, m)	39.41	
0.95 (3H, s)	22	0.97 (3H, s)	21.86	
2.16 (3H, s)	31.1	1.38 (3H, s)	31.9	
-	123.7	-	123.63	
7.10 (1H, s)	139.7	7.38 (1H, t, 1.6)	142.96	
6.16 (1H, s)	111	6.17 (1H, br, s)	110.92	
7.36 (1H, t, 1.8)	143	7.12 (1H, br, s)	139.56	
1.12 (3H, s)	21.8	1.13 (3H, s)	21.65	
1.15 (3H, s)	19.3	1.17 (3H, s)	19.31	
1.36 (3H, s)	20.1	1.31 (3H, s)	19.97	
2.14 (3H, s)	21.6	2.15 (3H, s)	21.4	
-	171.9	-	171.74	

Table 2. ¹H NMR and ¹³C NMR of 2 and 14β,15β-epoxynimonol (Govindachari et al., 1999).

CONCLUSION

One novel lasiocarpines (1) and one known 14β , 15β -epoxynimonol (2), two havanensin-type limonoids, have been isolated from the seeds of *Chisocheton lasiocarpus*. Lasiocarpines, a new limonoid, has a unique side chain with the dihydrolactim group.

ACKNOWLEDGEMENT

0 10

We would like to thank the Ministry of Research, Technology, and Higher Education for the PTM Grant (N, 2020), Dr. Ahmad Darmawan, and Dr. Sofa Fajriah for NMR measurements, The Bogor Botanical Garden for his plant samples.

REFERENCES

Awang, K., Lim, C. S., Mohamad, K., Hiroshi, M., Hirasawa, Y., Takeya, K., Thoison, O., and Hadi, A. H. A., 2007. Erythrocarpines A-E, New Cytotoxic Limonoids from *Chisocheton erythrocarpus. Bioorganic and Medicinal Chemistry* 15, 5997-6002. doi: 10.1016/j.bmc.2007.05.049.

- Chong, S.L., Awang, K., Martin, M.T., Mokhtar, M.R., Chan, G., Litaudon, M., Gueritte, F., and Mohamad, K., 2012. Malayanines A and B, Two Novel Limonoids from *Chisocheton erythrocarpus* Hiern. *Tetrahedron Letter* 53, 5355–5359. doi: 10.1016/j.tetlet.2012.07.067.
- Govindachari, T.R., Malathi, R., Gopalakrishnan, G., Suresh, G and Rajan, S.S., 1999. Isolation of A New Tetranortriterpenoid from the Uncrushed Green Leaves of Azadirachta indica. *Phytochemistry* 52, 1117-1119. Doi: 10.1016/S0031-9422(99)00367-2.
- Hoai N. T, Duc, H. V., Raal, A., and Morita, H., 2018. A New Limonoid from *Chisocheton paniculatus* Fruit Collected in Vietnam and Its NO Production Inhibitory Activity. *Natural Product Communications* 13 (10), 1255-1257. Doi: 10.1177/1934578X1801301005.
- Katja, D.G., Farabi, K., Nurlelasari, Hidayat, A.T., Mayanti, T., Harneti, D., and U. Supratman., 2016. A New 30-nor Trijugin-type Limonoid, Chisotrijugin, from the Bark of *Chisocheton cumingianus* (Meliaceae). *International Journal of Chemistry* 8, 30-34. Doi: 10.5539/ijc.v8n3p30.
- Laphookhieo, S., Maneerat, W., Koysomboon, S., Kiattansakul, R., Chantrapromma, K., and Syers, J., 2008. A Novel Limonoid from the Seeds of *Chisocheton siamensis*. *Canadian Journal of Chemistry* 86(3), 205–208. Doi: 10.1139/v07-155.
- Mohamad, K., Hirasawa, Y., Litaudon, M., Awang, K., Hamid, A., Hadi, A., Takeya, K., Ekasari, W., Widyawaruyanti, A., Zaini, N.C., and Morita, H., 2009. Ceramicines B–D, New Antiplasmodial Limonoids from *Chisocheton ceramicus*. *Bioorgic and Medicinal Chemistry* 17, 727–730. Doi: 10.1016/j.bmc.2008.11.048.
- Najmuldeen, I.A., Hadi, A. H.A., Awang, K., Mohamad, K., Ketuly, K.A., Mukhtar, M. R., Chong, S. L., Chan, G., Nafiah, M. A., Weng, N. S., Shirota, O., Hosoya, T., Nugroho, A. E., and Morita, H., 2011. Chisomicines A-C, Limonoids from *Chisocheton ceramicus*. *Journal of Natural Products* 74(5), 1313– 1317. Doi: 10.1021/np200013g.
- Nurlelasari, D.G. Katja, D. Harneti, M. M. Wardayo, U. Supratman., and K. Awang., 2017. Limonoids from the Seeds of *Chisocheton* macrophyllus. *Chemistry of Natural Compounds* 53(1), 83-87. Doi: 10.1007/s10600-017-1916-4.
- Shilpi, J.A., Sahab, S., Chong, S. L., Nahard, L., Sarkerd S. D., and Awang, K., 2016. Advances in Chemistry and Bioactivity of the Genus *Chisocheton* BLUME. *Chemical Biodiversity* 13, 483-503. Doi: 10.1002/cbdv.201400373.
- Supriatno, Nurlelasari, Herlina, T., Harneti, D., Maharani, R., Hidayat, A.T., Mayanti, T., Supratman, U., Azmi, M.N., and Shiono., Y., 2018. A New Limonoid from Stem Bark of *Chisocheton pentandrus* (Meliaceae). *Natural Product Research* 32, 1478-6419. Doi: 10.1080/14786419.2018.1428600.
- Yang, M.H., Wang, J. S., Luo, J. G., Wang, X. B., and Kong, L.Y., 2009. Tetranortriterpenoids from *Chisocheton paniculatus. Journal of Natural Products* 72(11), 2014–2018. Doi: 10.1021/np900485t.