

E-ISSN: 2797-0035 P-ISSN: 2776-1770

ORIGINAL RESEARCH

Erector Spinae Block vs Paravertebral Block in Breast Cancer Surgery: A Systematic Review and Meta-analysis

Rizky Rahmad Tri Cahyo^{™*}, Doso Sutiyono^{**}, Intan Karmila^{***}, Ismini Aufakamilia^{****}

Article Info: Submitted: 15-11-2022 Accepted:

01-10-2025

Published: 31-10-2025

https://doi.org/10.20961/sojaV5i2.67351

Authors' affiliations: *Resident anesthesiology and intensive care, Diponegoro University **Anesthesiologist in Dr. Kariadi General Hospital Medical Center and Diponegoro University ****Internship Doctor at Praya Regional Hospital, West Nusa Tenggara *****Internship Doctor at Islamic Hospital Yatofa, West Nusa Tenggara [⊠]Correspondence: Rizkyrahmad.md@gmail. com

ABSTRACT

Background: The paravertebral block (PVB) is the gold standard for postoperative analgesia in breast surgery, but it easily causes pneumothorax. Erector spinae plane block (ESPB) is considered as alternative to PVB because its less invasive so relative safer. However, evidence in favor of these techniques is lacking.

Method:. A search of PubMed Central, Cochrane Library, Wiley Online Library, and ClinicalTrials.gov to identify the latest 20 years studies comparing ESPB and PVB in breast cancer surgery was conducted. Our endpoints were: intraoperative fentanyl consumption, total postoperative morphine, and time to first analgesic request.

Result: A total of 6 studies (394 patients) were included for this meta-analysis. The pooled analysis showed there is -3.03 (MD = -3.03: 95% CI: -7.47- 1.42) mean difference with insignificant overall effect (P = 0.18) for intraoperative fentanyl consumption on ESPB patient after breast cancer surgery compared against PVB procedure. There is an insignificant between ESPB and PVB regarding total postoperative morphine with 0.46 (MD = 0.46: 95% CI: -0.94 - 1.85) mean difference with insignificant overall effect (P =0.52). There is a significant difference between ESPB and PVB regarding time to first analgesic request with 0.23(MD = 0.23:95%)CI: 0.01–0.44) risk ratio with statistically significant overall effect (P = 0.04). Both intraoperative fentanyl consumption and total postoperative consumption showed heterogeneity. Meanwhile, time to the first analgesic request showed no heterogeneity.

Conclusion: PVB is superior to ESPB regarding time to first analgesic request, but ESPB can serve as an alternative to PVB with a similar analgesic effect.

Keywords: Breast cancer surgery; Erector Spinae Plane Block (ESPB); Mastectomy; Paravertebral Block (PVB); Radical mastectomy.

INTRODUCTION

Breast cancer is one of the most commonly reported malignancies in females, with a high proportion of affected patients undergoing breast surgery. 1,2 However, the post-operative pain of breast surgery is difficult to manage due to the complexity of the surgery and nerve innervation.² 30-50% of patients have reported moderate to severe acute pain, and 8-25% have persistent post-surgical pain.³ Poorly controlled acute postsurgical pain is associated with impaired functional recovery, increased length of hospital stay, and delayed discharge from the post-anesthesia care unit — therefore resulting in significant health care needs and costs.^{3,4}

Regional anesthesia technique that considered as the gold standard for managing breast surgical pain is Thoracic paravertebral block (PVB). 1,2,5 Although it is an effective technique for achieving adequate postoperative analgesia, it's an advanced technique with potential complications risks such as pleural penetrating and pneumothorax. 6

Erector spinae plane block (ESPB) is a myofascial plane block that considered as alternative to PVB because its less

invasiveness. ease application, safer relatively and possible wider anesthetics.^{2,6} spreading of local However, evidence in favor of these novel lacking.¹ techniques Previous systematic reviews and meta-analysis reported the efficacy of ESPB^{7,8}, but trials of surgeries other than breast surgery were included in meta-analyses. these Furthermore, there are very few metaanalyses which compare ESPB and PVB. Therefore, we aim to conduct this metaanalysis to assess whether Erector Spinae Block is associated with improved outcomes (including intraoperative fentanyl consumption, total post operative morphine, and time to first analgesic request) compared with paravertebral block in breast cancer surgery.

METHOD

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the latest 20 years studies (published in 2002-2022) using PubMed Central, the Cochrane Library, Wiley Online Library, and ClinicalTrials.gov database. The search terms (text word) were "breast surgery", "mastectomy",

"Erector spinae", ESP, "Paravertebral Block", and PVB. Inclusion criteria for final selected studies were as follows: (1) language limited to English; (2) Randomized Controlled Trials comparing ESPB versus PVB as adjuvant anesthesia to general anesthesia in breast Surgery or mastectomy Surgery, include female ≥18 years with all type of breast resection with without tumor or axillary interventions; concomitant (3) Studies which reported at least one of the outcomes of our interest (endpoints). Our endpoints were: intraoperative fentanyl consumption, total postoperative morphine, and time to first analgesic request.

Data extraction

The initial search yielded 458 studies, but only 6 studies included in the final analysis based on eligibility criteria. The flowchart of the study is shown in Figure-1. Information about the study and patient characteristics, intervention strategies, and clinical outcomes was systematically extracted.


Quality Assessment

Risk of bias for each study were evaluated by author using The Cochrane Collaboration's tool. The tool consists of seven points: random sequence generation, blinding of participants and personnel, blinding of outcome allocation concealment, assessment, selective reporting, incomplete outcome data. and other sources of bias. Randomized Trials with > 2 high-risk components were considered as having a moderate risk of bias, meanwhile randomized trials with > 4 high-risk components were considered as having a high risk of bias. (**Figure-2**)

Statistical Analyses

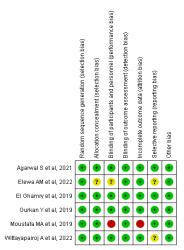

For each outcome, mean difference (MD) with a 95% confidence interval (CI) were calculated for continuous data. The heterogeneity was assessed using the Cochran's Q chi-square test and I² analysis method. The Q analysis show statistically significant heterogeneity if P-value < 0.05 and the I^2 values >50%. When there was insignificant heterogeneity, the data were pooled using a fixed-effects model, otherwise a random effect model was used. Publication bias was assessed graphically using a funnel plot. The data were processed utilizing Review Manager software (Version 5.4.1, the Cochrane Collaboration, 2020).

Figure-1. PRISMA Flowsheet.

Figure-2. Risk of bias summary

RESULT

Demographic characteristics of the included studies

We identified 458 studies from the keyword hits, after screening eligibility assessment of those studies, 452 studies were excluded for various reasons, and we found 6 potentially relevant studies for the purpose of this systematic review and meta-analysis from 6 countries, including India, Egypt, Turkey, Thailand, China, and Japan. Out of six potentially relevant studies, all of them were randomized controlled trials. All of the included studies were double-blinded. Out of 394 participants included in this metaanalysis, There are 197 participants who undergo an erector spinae plane block and 197 participants who undergo paravertebral block. Detailed information

about demographic and study characteristic of included studies summarized in Table 1.

Outcome characteristics of the included studies

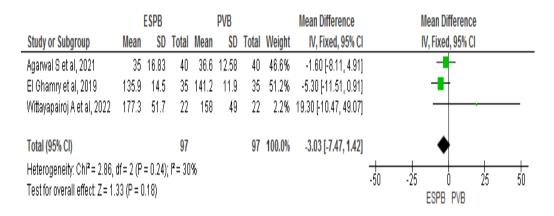
Total participants in 6 included studies are 394 participants consist of 197 participants with 197 participants undergo with erector spinae plane block and 197 participants undergo with paravertebral block. In this systematic review and meta-analysis, we assessed intraoperative fentanyl consumption, total postoperative morphine, and time to the first analgesic request. Detailed result of assessed outcome in this study summarized in Table 2.

Table 1. Demographic characteristic of erector spinae block against paravertebral block in breast cancer surgery (mastectomy or radical mastectomy) patients of the included studies

Studies	Location	Study Method	Binding	Study Period	Outcome	Inclusion Criteria	Partic (1 ESPB	ipants n) PVB
Agarwal S et al, 2021 ¹	India	Prospective RCT	Double blinded	1 years	 Duration of analgesia (min) Intraoperative fentanyl consumption (mcg) Total dose of diclofenac (mg) 	Female patients in the age group ranging 18-70 years, who underwent radical mastectomy	40	40
El-Ghamry et al, 2019 ⁹	Egypt	Prospective RCT	Double blinded	5 months	 Intraoperative fentanyl consumption (mcg) Total postoperative morphine (mg) Time to first analgesic request (h) Nausea (%) Vomiting (%) Pneumothorax (%) 	Female patients in the age group ranging 20-60 years, who underwent modified radical mastectomy	35	35
Elewa AM et al, 2022 ⁵	Egypt	Prospective RCT	Double blinded	9 months	 Total morphine consumption (mg) For first required analgesia (h) Intraoperative isoflurane (ml) VAS at 1 h VAS at 4 h VAS at 8 h VAS at 12 h VAS at 24 h PONV, N 	Female patients in the age group ranging 20-60 years, who underwent modified radical mastectomy	30	30

Gurkan Y et al, 2019 ⁶	Turkey	Prospective RCT	Double blinded	5 months	 NRS at 1 h NRS at 6 h NRS at 12 h NRS at 24 h Morphine consumption (mg) 1st h 6th h 12th h 24th h 	Female patients aged 18-65 years who were scheduled to go under elective unilateral breast surgery for breast cancer	25	25
Moustafa MA et al, 2019 ¹⁰	Egypt	Prospective RCT	Double blinded	10 months	 Time to first analgesic requirement (h) Total morphine consumption (mg) 	Female patients aged 40-65 years who were scheduled for modified radical mastectomy	45	45
Wittayapairoj A et al, 2022 ¹¹	Thailand	Prospective RCT	Double blinded	7 months	 Intraoperative fentanyl consumption (mcg) Total morphine consumption in 24 h (mg) Number of patients requiring rescue morphine Frequency of rescue morphine requirements (time) 	Female patients aged 18-75 years who were scheduled for unilateral mastectomy	22	22
		197				197	13	7 /
				Total		197	39	94

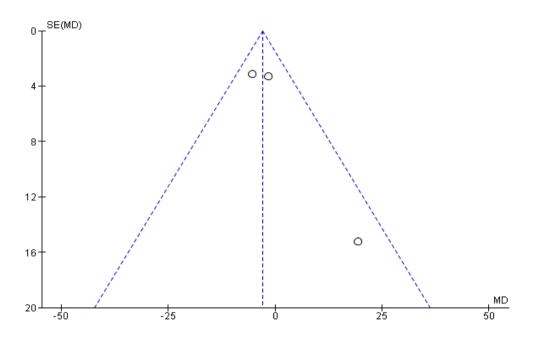
RCT: Randomized Controlled Trial, NRS/VAS: numerical rating scale/visual analogue scale, PONV: post-operative nausea and vomitting


Table 2. Outcome of erector spinae block against paravertebral block in breast cancer surgery (mastectomy or radical mastectomy) patients of the included studies

		Pu	tients of the me	idaca stadies			
Studies	ESPB				PVB		
	Intraoperative	Total	Time to first		Intraoperative	Total	Time to firs
	fentanyl	postoperative	analgesic	Groups (n)	fentanyl	postoperative	analgesic
	consumption	morphine (mg)	request (h)		consumption	morphine (mg)	request (h)
	(mcg)				(mcg)		
Agarwal S et al, 2021 ¹	35 <u>+</u> 16.83	-	-	1. GA + ESPB (40)	36.6 <u>+</u> 12.58	-	-
				2. GA + PVB (40)			
El-Ghamry et al, 2019 ⁹	135.9 <u>+</u> 14.5	26.7 ± 2.1	6.58 <u>+</u> 0.60	1. GA + ESPB (35)	141.2 <u>+</u> 11.9	27.3 <u>+</u> 2.9	6.35 <u>+</u> 0.42
				2. GA + PVB (35)			
Elewa AM et al, 2022 ⁵	-	4.9 <u>+</u> 1.2	7.9 <u>+</u> 1.2	1.GA + ESPB (30)	-	5.8 ± 1.3	7.5 <u>+</u> 0.9
				2.GA + PVB (30)			
Gurkan Y et al, 2019 ⁶		5.6 ± 3.43		1. GA + ESPB (25)		5.64 ± 4.15	
- · · · · · · · · · · · · · · · · · · ·	-		-	2. GA + PVB (25)	-	<u>.</u>	-
Moustafa MA et al, 2019 ¹⁰		6.17 <u>+</u> 2.08	11.04 <u>+</u> 1.9	1. GA + ESPB (45)		6.22 ± 2.09	11.22 ± 1.95
vioustala iviA et al, 2019	-	0.17 <u>+</u> 2.06	11.04 <u>+</u> 1.9	2. GA + PVB (45)	-	0.22 <u>+</u> 2.09	11.22 <u>+</u> 1.9.
				, ,			
Wittayapairoj A et al, 2022 ¹¹	177.3 <u>+</u> 51.7	8.6 <u>+</u> 3.8	-	1. GA + ESPB (22)	158.0 <u>+</u> 49.0	3.5 <u>+</u> 3.3	-
				2. GA + PVB (22)	2.63 <u>+</u> 49.0		

^{*}mean ± Standard Deviation (SD). ESPB: erector spinae plane block, GA: general anesthesia, PVB: paravertebral block

Intraoperative Fentanyl Consumption Outcome of Erector Spinae Plane Block vs. Paravertebral Block in Patients Undergoing Breast Cancer Surgery (Mastectomy or Radical Mastectomy)


Figure 3. The forest plot of intraoperative fentanyl consumption on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure

In the meta-analysis forest plot 3 presented in figure showed heterogeneity model analysis ($I^2 = 30\%$; $X^2 = 2.86$; P = 0.24). Based on the heterogeneity analytical result data compiled from three studies included were statistically heterogeneous, so on fixed-effect analysis we conducted a summary effect measure to evaluate risk of ratio intraoperative fentanyl consumption on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure. The analytical results showed there is -3.03 (MD = -7.47: 95% CI: -7.47 - 1.42; P = 0.18) mean difference with statistically insignificant overall

effect (P = 0.18) for intraoperative fentanyl consumption. This result

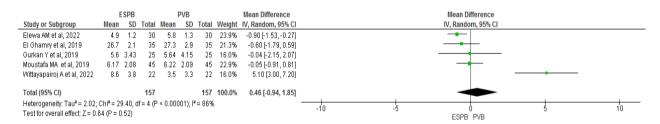
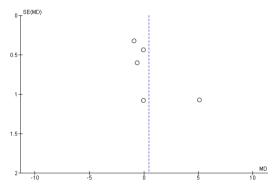

showed there is no significant mean difference of intraoperative fentanyl consumption on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure. To exclude publication bias risk. funnel plot assessment performed. Based the visual on inspection of the funnel plot shown in figure 4, there is asymmetry plotting of three studies included on the funnel plot. Based on this, we can assume the result of the analysis have a risk of publication bias.

Figure 4. The funnel plot of intraoperative fentanyl consumption on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure

Total Postoperative Morphine Outcome of Erector Spinae Plane Block Against Paravertebral Block in Breast Cancer Surgery (Mastectomy Or Radical Mastectomy) Patients

Figure 5. The forest plot of total postoperative morphine on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure


In the meta-analysis forest plot presented in figure 5 showed heterogeneity model analysis ($I^2 = 86\%$; $X^2 = 29.40$; P < 0.00001). Based on the heterogeneity analytical result data compiled from five studies included

were statistically heterogeneous, so on random-effect analysis we conducted a summary effect measure to evaluate total postoperative morphine on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure. The

analytical results showed there is 0.46 (MD = 0.46: 95% CI: -0.94 - 1.85) mean difference with statistically insignificant overall effect (P = 0.52) for total postoperative morphine. This result showed there is statistically no

significant difference in total postoperative morphine between patients undergoing erector spinae block after breast cancer surgery and those undergoing paravertebral block.

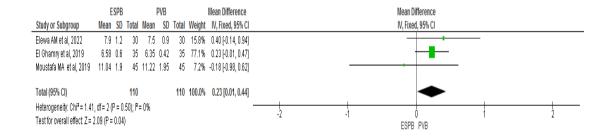


Figure 6. The funnel plot of total postoperative morphine on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure

To exclude publication bias risk, funnel plot assessment was performed. Based on the visual inspection of the funnel plot shown in figure 6, there is asymmetry plotting of five studies included on the funnel plot. Based on

this, we can assume the result of the analysis have a risk of publication bias.

Time to First Analgesic Request Outcome of Erector Spinae block plane vs. Paravertebral Block in Patients Undergoing Breast Cancer Surgery (Mastectomy or Radical Mastectomy)

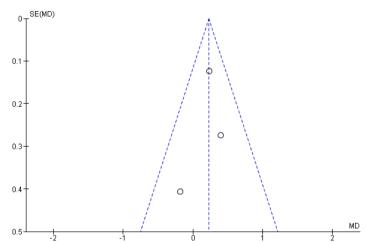


Figure 7. The forest plot of time to first analgesic request on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure

In the meta-analysis forest plot presented in figure 7 showed heterogeneity model analysis ($I^2 = 0\%$; $X^2 = 1.41$; P = 0.50). Based on the heterogeneity analytical result data compiled from three studies included were statistically no heterogeneous, so on fixed-effect analysis we conducted a summary effect measure to evaluate mean difference of time to first analgesic request on erector spinae block plane patient after breast cancer surgery

compared against paravertebral block procedure. The analytical results showed there is 0.23 (MD = 0.23: 95% CI: 0.01 – 0.44) mean difference with statistically significant overall effect (P = 0.04) for time to first analgesic request. This result showed there is significant effect of time to first analgesic request on erector spinae blocks plane patient after breast cancer surgery compared against paravertebral block procedure.

Figure 8. The funnel plot of time to first analgesic request on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure

To exclude publication bias risk, funnel plot assessment was performed. Based on the visual inspection of the funnel plot shown in figure 8, there is asymmetry plotting of three studies included on the funnel plot. Based on this, we can assume the result of the analysis have a risk of publication bias.

Discussion

Thoracic Epidural Anesthesia (TEA) has gradually been replaced by other techniques in recent years due to the risks and limitations of TEA, including the restricted inclusion of patients using anticoagulants and the high rates of respiratory depression,

hypotension, and postoperative urinary retention associated with TEA. It has been progressively replaced with other techniques, such as ultrasonic guided PVB and ESPB.⁸

Paravertebral blockage (PVB) is multi-purpose and can be applied unilaterally or bilaterally. In contrast to a thoracic epidural, the PVB technique can used to prevent contralateral be sympathectomy, thus reducing hypotension and leading to better preservation of blood pressure. Thoracic PVB provides post-thoracotomy pain relief similar to thoracic epidural analgesia (TEA) with inferior side effects supported by medium quality evidence.¹² Erector spinae plane (ESP) block is a new nerve blockage technique offered for the first time by Forero et al. in 2016.¹³ This is commonly performed by depositing drugs on the fascial plane beneath the erector spinae muscles at the apex of the transverse process of the spine to reduce pneumothorax and significant neurovascular injury. A number of studies have also reported that ESPB has an effective role in postoperative analgesia for thoracic and thoracic surgery, showing that it can be easily performed with high occlusion rates.8

Our meta-analysis result showed there is statistically no significant mean difference of intraoperative fentanyl consumption on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure (MD = -3.03; 95% CI: -7.47 – 1.42; P = 0.18). This is in line with a retrospective cohort study by Aoyama et al. that mentions intraoperative fentanyl consumption for ESPB being lower than PVB. There is statistically no significant difference between both ESPB and PVB 0.76) regarding groups intraoperative fentanyl consumption, according to Aoyama et al.14

Previous meta-analysis by Xiong et al. revealed that there is no statistically significant mean difference in total postoperative morphine between the erector spinae plane block procedure and the paravertebral block plane procedure on patients after breast cancer surgery (MD = -1.08; 95% CI: -2.76 – 0.51; P=0.18). This in line with our metaanalysis showed result there statistically significant no mean difference of total postoperative morphine on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedure (MD = 0.46; 95% CI: -0.94 –

1.85; P = 0.52). This result that more morphine consumption at 24 hours by 0.46 mg after surgery for ESPB compared to PVB.⁸

This meta-analysis also found that there is statistically significant mean difference of time to first analgesic request on erector spinae block plane patient after breast cancer surgery compared against paravertebral block procedur (MD = 0.23; 95% CI: 0.01 -0.44; P = 0.04). However, according to the researcher, the difference is not significant enough when applied in clinical practice because the difference in effect size (mean difference) is only 0.23. The possibility of this occurring is due to bias in sample selection, one of which is a withdrawal bias, in which participants withdraw from the study.

There are several limitations to our meta-analysis and systematic review. First, the included research that describes our research is limited because there is very little research on this particular issue that can be accessed for free, which may weaken the conclusion. Second, most of the literature is composed of small sample sizes, with the largest included experimental group is 45 patients. Third, this study was limited to ESPB and restricted the inclusion of

studies of other novel fascial plane blocks.

CONCLUSION

There was a statistically insignificant overall effect for intraoperative fentanyl consumption and total postoperative morphine, which showed heterogeneity. Meanwhile, there was statistical significance regarding the time to the first analgesic request, and it showed no heterogeneity.

REFERENCES

- 1. Agarwal S, Bharati S, Bhatnagar S, Mishra S, Garg R, Gupta N, et al. The comparison of the efficacy of ultrasound-guided paravertebral block versus erector spinae plane block for postoperative analgesia in modified radical mastectomy: A randomized controlled trial. Saudi J Anaesth. 2021;15(2):137–43.
- 2. Weng WT, Wang CJ, Li CY, Wen HW, Liu YC. Erector spinae plane block similar to paravertebral block for perioperative pain control in breast surgery: A meta-analysis study. Pain Physician. 2021;24(3):203–13.
- Leong RW, Tan ESJ, Wong SN,
 Tan KH, Liu CW. Efficacy of

- erector spinae plane block for analgesia in breast surgery: a systematic review and meta-analysis. Anaesthesia. 2021;76(3):404–13.
- 4. Allen G. A Systematic Review and Meta-Analysis of Erector Spinae Plane Block in Breast Surgery. AORN J. 2021;114(2):193–6.
- 5. Elewa AM, Faisal M, Sjöberg F, Comparison Abuelnaga ME. between erector spinae plane block and paravertebral block regarding postoperative analgesic consumption following breast surgery: a randomized controlled study. **BMC** Anesthesiol [Internet]. 2022;22(1):1–9. Available from: https://doi.org/10.1186/s12871-022-01724-3
- Gürkan Y, Aksu C, Kuş A, 6. Yörükoğlu UH. Erector spinae plane block and thoracic paravertebral block for breast surgery compared IVto morphine: A randomized controlled trial. J Clin Anesth. 2020;59(March 2019):84-8.
- 7. Huang W, Wang W, Xie W, Chen

- Z, Liu Y. Erector spinae plane block for postoperative analgesia in breast and thoracic surgery: A systematic review and meta-analysis. J Clin Anesth [Internet]. 2020;66(1023):109900. Available from:
- https://doi.org/10.1016/j.jclinane. 2020.109900
- 8. Xiong C, Han C, Zhao D, Peng W, Xu D, Lan Z. Postoperative analgesic effects of paravertebral block versus erector spinae plane block for thoracic and breast surgery: A meta-analysis. PLoS One [Internet]. 2021;16(8 August):1–17. Available from: http://dx.doi.org/10.1371/journal. pone.0256611
- 9. Ghamry MR, Amer AF. Original Article Role of erector spinae plane block versus paravertebral block in pain control after modified radical A mastectomy. prospective randomised trial. Indian Anaesth. 2019;63(12):1008–14.
- Moustafa AM, Alabd AS, Ahmed AM, Deghidy EA. Basics of CPB. Indian J Anaesth. 2020;64(1):49–54.

- 11. Wittayapairoj A, Sinthuchao N, Somintara O, Thincheelong V, Somdee W. A randomized double-blind controlled study comparing erector spinae plane block and thoracic paravertebral block for postoperative analgesia after breast surgery. Anesth Pain Med. 2022;445–53.
- 12. D'Ercole F, Arora H, Kumar PA.
 Paravertebral Block for Thoracic
 Surgery. J Cardiothorac Vasc
 Anesth [Internet].
 2018;32(2):915–27. Available
 from:
 http://dx.doi.org/10.1053/j.jvca.2
 017.10.003
- 13. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block a novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41(5):621–7.
- 14. Aoyama Y, Sakura S, Tsuchiya R, Wittayapairoj A, Saito Y. Erector spinae plane block and paravertebral block for breast surgery: A retrospective propensity-matched noninferiority trial. J Pain Res. 2020;13:2367–76.