

REVIEW ARTICLE

A Meta-Analysis of 80% Fraction of Inspired Oxygen on Surgical Site Infection in Patients Undergoing Surgery

Rifaldy Nabiel Erisadana^{⊠*,} Achmad Ilham Tohari^{*}, Yehuda Tri Nugroho Supranoto^{*,} Wiwien Sugih Utami^{**}, Laksmi Indreswari^{***}

Article Info : Submitted : 19-06-2022 Accepted : 21-03-2023 Published : 31-04-2023 https://doi.org/10.20961/ soja.V3i1.62251

Authors' affiliations: *Faculty of Medicine, Universitas Jember, Indonesia **Department of Parasitology, Faculty of Medicine, Universitas Jember, Indonesia ***Department of General Surgery, Soebandi General Hospital, Faculty of Medicine Universitas Jember, Indonesia ©Correspondence: rifaldydana@gmail.com

ABSTRACT

Background: WHO recommended the use of 80% FiO₂ in patients undergoing general anesthesia with endotracheal intubation (ETI) to prevent surgical site infection (SSI). However, the ongoing debate regarding efficacy and safety raises because further trials have been published. We conducted a review based on recommendations in terms of SSI as the primary outcome and adverse events as the secondary outcome in both patients with or without ETI.

Method: A literature search was carried out by PubMed, ScienceDirect, and Google Scholar for RCTs in all-type surgical patients who administrated 80% FiO₂ compared with 30–35% FiO₂. Pooled relative risks with a 95% confidence interval were conducted for meta-analysis. **Result:** Based on 23 RCTs included in the analysis, there were no significant differences in terms of SSI (RR,0.85; 95%CI, 0.72 to 1.01; p=0.07), sepsis (RR,1.47; 95%CI, 0.78 to 2.76; p=0.23), postoperative hospitalization days (PHD) (RR,0.16; 95%CI, -0.67 to 0.98; p=0.71), ICU admission (RR,0.94; 95%CI, 0.78 to 1.13; p=0.50), reoperation required (RR,0.78; 95%CI, 0.30 to 2.06; p=0.62), and 30-days mortality (RR,1.18; 95%CI, 0.76 to 1.84; p=0.45). In contrast, even though the subgroup analysis showed association that PHD longer in high FiO₂ group for colorectal surgery (RR,0.80; 95%CI, 0.24 to 1.35; p=0.005), the high FiO_2 significantly reduced SSI and anastomotic leakage in abdominal surgery (RR,0.78; 95%CI, 0.62 to 0.99; p=0.04 and RR,0.55; 95%CI, 0.36 to 0.85; p=0.008).

Conclusion: This meta-analysis provides evidence that administration of 80% FiO₂ even though association with longer of PHD in colorectal surgery, it is associated with a reduction in SSI and anastomotic leakage in patients who underwent abdominal surgery. It contrasts for sepsis, ICU admission, reoperation required, 30-day mortality, SSI, and PHD in all-type surgery.

Keywords: adverse events; meta-analysis; oxygen; surgery; surgical site infection.

Copyright @ 2023 Authors. This is an open access article distributed under the terms of the Creative Commons Attribution- 4.0 International License (<u>https://creativecommons.org/licenses/by/4.0/</u>)

Medical Faculty of Universitas Sebelas Maret - PERDATIN Solo.

Rifaldy Nabiel Erisadana, Achmad Ilham Tohari, Yehuda Tri Nugroho Supranoto, Wiwien Sugih Utami, Laksmi Indreswari A Meta-Analysis of 80% Fraction of Inspired Oxygen on Surgical Site Infection in Patients Undergoing Surgery

INTRODUCTION

Surgical site infections (SSI) are infection on incision site after surgery that clinically important postoperative adverse event because it leads to length of hospitalization, morbidty, mortality, and increases a considerable cost on health care system^{1,2}. A total of 135 from 4,893 (2.8%) abdominal surgeries developed SSI has been reported at Cipto Mangunkusumo Hospital, Jakarta, Indonesia, from January 2012 to November 2017^{3.} Preventive strategies approach by surgical or anesthesia departments to overcome this condition were urgently needed in order to enhanced satisfactory surgical care system. World Health Organization (WHO) have recommendation the use of 80% Fraction of inspiratory oxygen (FiO₂) as perioperative strategy to reduce the risk or incidence of surgical site infection in adult patients with endotracheal tube intubation under general anesthesia⁴. High concentrations of inspired oxygen might increase tissue oxygenation and thereby enhancing oxidative killing by neutrophil as bactericidal host defence. This mechanism is mediated when the superoxide anion is converted to hydrogen peroxide and then catalyzed by

myeloperoxidase into hypochlorous acid which has a bactericidal mechanism ⁵. Recent meta-analysis showed that 80% fraction of inspiratory oxygen clinically safe to reduce SSI in patients undergoing surgery and no substantial of concern WHO safety against recommendations⁶. However, further studies were widely published still lead to ongoing debate over the clinical use of high fraction of inspiratory oxygen. We conducted a review based on WHO recommendations in terms of surgical site infection as the primary outcome and adverse events such as sepsis, postoperative hospitalization days (PHD), anastomotic leakage, reoperation required, and 30-days mortality as the secondary outcome in both patients with or without endotracheal intubation.

METHODS

This systematic review and metaanalysis was reported based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guideline ⁷.

Database Searching and Study Selection

We performed database literature searching in Pubmed, Google Scholar, and ScienceDirect using the following keywords: Oxygen, FiO₂, (Surgical Site Infection OR SSI), and Surgery.

We only included articles that match our eligibility criteria: (1)Reported patients who underwent a major surgery aged 18 year or older; (2) The patients received an intervention either high FiO_2 (80%) or low FiO_2 (30-35%): (3) Reported at least one of the following outcomes: Surgical site infection (SSI), sepsis, anastomotic leakage, postoperative hospitalization days (PHD), ICU admission, reoperation, and 30-days mortality; (4) The article used RCT study design; (5) Written in English. The literature search was done in February 2022 without any year restriction.

All results from the databases were inputted in Rayyan.ai, an artificial intelligence online program that integrated to expedite initial the screening of abstracts and titles during studies selection process⁸. Two independent reviewers (RNE and AIT) selected the articles based on title and abstracts.

All articles that passed the title and abstract selection were screened for the eligibility criteria. Any conflicts in articles within the article selection were discussed with all authors.

Data extraction

All included studies underwent data extraction by two independent reviewers (RNE and AIT). The main outcome of this study is SSI. There were many secondary outcomes such as the incidence of sepsis, anastomotic leakage, PHD, ICU admission, reoperation, and mortality. Several data were extracted from the studies including the author, year, sample size, age, type of surgery, duration of surgery, outcome, type of anesthesia, postoperative oxygenation, follow-up, and bacterial culture. Any controversies between data extraction were discussed with other authors.

Risk of bias assessment

The risk of bias in each study was assessed using Cochrane Risk of Bias 2 (ROB 2) tool⁹. The ROB 2 tool consists of five domains like selection bias, performance bias, detection bias, attrition bias, and reporting bias. Each domain was graded as "low risk", "some concern", and "high risk" of bias.

The risk of bias assessment was conducted by two authors (LI and YTS) independently. Any difference in terms of grading was discussed with other authors. Publication bias was assessed using a funnel plot if only there were 10 or more studies included in the analysis,

a symmetrical funnel plot is defined as low publication bias.

Data synthesis and analysis

The data were analyzed both analyzed narratively and quantitatively using meta-analysis. The meta-analysis was conducted using Review Manager (RevMan) 5.4 (Cochrane collaboration, oxford, UK) with 95% confidence interval (CI). Pooled risk ratio was used to calculate the outcome of SSI, sepsis, anastomotic leakage, ICU admission, reoperation, and mortality.

In addition, pooled mean difference (MD) was used to calculate the outcome in PHD. Random Effects Model (REM) and Fixed Effects Model (FIM) were used based on the heterogeneity ($I^2 > 50\%$ determined as high heterogeneity, $I^2 < 50\%$ determined as low heterogeneity) based on Cochrane handbook of systematic reviews of interventions¹⁰. A subgroup analysis was performed based on the type of surgery.

RESULTS

Studies Selection

Based on the database searching, we found a total of 1954 articles from Pubmed, Google Scholar, and ScienceDirect. We conducted the duplicate screening automatically using Rayyan.ai and then underwent title and abstract screening. After title and abstract screening, 25 articles were checked for eligibility by full-text screening. Qualitative synthesis and quantitative analysis using meta-analysis were performed in 23 included articles. Figure 1 shows the PRISMA flow chart.

Figure 1. PRISMA Flowchart

Study characteristics and Risk of Bias

Table 1 and Table 2 summarize all the included RCT studies. The sample size varied between each study ranging from 38 to 2012 samples. The included studies were conducted in several countries such as Austria¹, USA⁶, Spain¹, Israel², Denmark¹, France¹, Hong Kong¹, Italy³, India², Iran¹, China¹, and multicenter countries³.

The risk of bias assessment was conducted using Cochrane ROB 2 tool and presented in supplementary files. The risk of bias varied from low risk – high risk of bias. There are 7 studies labeled as low risks of bias, 8 studies some concern/uncertain, and 8 studies high risks of bias.

Study	Sample Size	Type of surgery	Α	ge	Duration	of surgery	Interv	ention	Patients outcomes
			High FiO2	Low FiO ₂	High FiO2	Low FiO ₂	High FiO ₂	Low FiO ₂	-
Greif et al, (2000) Austria ¹¹	500	Elective open colorectal resection	57±15	57±15	3.1±1.4 (h)	3.1±1.4 (h)	80% O ₂ with 20% N ₂ O	30% O ₂ with 70% N ₂ O	SSI, PHD, ICU admission
Pryor et al, (2004) USA ¹²	160	Major abdominal surgery	54±16	57±15	233±83 (min)	208±91 (min)	80% O ₂	35% O ₂	SSI, PHD, ICU admission
Belda et al, (2005) Spain ¹³	291	Elective colorectal resection	64.2±11.8	62.3±12.5	161±62 (min)	159±61 (min)	80% O ₂	30% O ₂	SSI, PHD, ICU admission
Mayzler et al, (2005) Israel ¹⁴	38	Elective colorectal surgery	67±10	69±9	140±40 (min)	135±40 (min)	80% O ₂ with 20% N ₂ O	30% O ₂ with 70% N ₂ O	SSI, anastomotic leakage
Myles et al, (2007) Multicenter ¹⁵	2012	Mixed surgeries	55.8±17	54.6±16	3.3±2.0 (h)	3.3±2.0 (h)	80% O ₂ with 20% N ₂ O	30% O ₂ with 70% N ₂ O	SSI, ICU admission, 30-days mortality
Gardella et al, (2008) USA ¹⁶	143	Caesarean section	31 (19– 46)	28 (16– 47)	48 (26– 87) (min)	52 (20– 141) (min)	80% O ₂	30% O ₂	SSI
Meyhoff et al, (2009) Denmark ¹⁷	1386	Acute or elective laparotomy	64 (27–85)	64 (34–84)	128 (38– 310) (min)	132 (35– 295) (min)	80% O ₂	30% O ₂	SSI, ICU admission, anastomotic leakage, PHD, re 30-days mortality
	(22)	Colorectal	ND	ND	ND	ND	80% 0	200/ 0	601
Bickel et al, (2011)	210	Open appendectomy	28.5± 12.3	27.6±10.8	33.04±10. 6 (min)	32.75±10. 3 (min)	80% O ₂ 80% O ₂ with 20% air	30% O ₂ 30% O ₂ with 70%	SSI, PHD
Scifres et al, (2011) USA ¹⁹	585	Caesarean section	27.5±6.4	27.8±5.9	57.4±20.5 (min)	60.6±26.1 (min)	80% O ₂	25-35% O ₂	SSI
Thibon et al, (2012) France ²⁰	434	Abdominal, gynecologic, breast (Mixed surgeries)	52.1±13.7	51.8±13.3	89±61 (min)	84±58 (min)	80% O ₂	30% O ₂	SSI
Chen et al, (2013) Hong Kong ²¹	60	Open colorectal surgery	62±12	60±15	A/199± 76 (min)	A/184±85 (min)	80% O ₂	30% O ₂	SSI, PHD
Duggal et al, (2013) USA ²²	831	Caesarean section	29.2±5.6	29.5±5.8	NR	NR	80% O ₂	30% O ₂	SSI and/or endometritis
Schietroma et al, (2013) Italy ²³	171	gastrectomy and subsequent esophagojejunal anastomosis	68.4 (51– 84)	67.8 (48– 82)	175 (100–250) (min)	180 (118–270) (min)	80% O ₂	30% O ₂	SSI, anastomotic leakage, reoperation required
Stall et al (2013) USA ²⁴	235	Open reduction and internal fixation	42.3±12.1	42.5±12.2	233±88 (min)	228±88 (min)	80% O ₂	30% O ₂	SSI
Williams et al, (2013) USA ²⁵	160	Caesarean section	24.6024	24.8961	51.2048 (min)	52.2467 (min)	80% O ₂	30% O ₂	SSI
Kurz et al, (2015) Multicenter ²⁶	586	Colorectal resection	54±16	51±17	3.5±1.5 (h)	3.5±1.8 (h)	80% O ₂	30% O ₂	SSI, PHD, 30-days mortality
Wasnik et al, (2015) India ²⁷	64	Open Appendectomy	27.15±10. 46	28.56±12. 22	61.87±10. 6 (min)	61.4±12.5 (min)	80% O ₂	30% O ₂	SSI, PHD
Fariba et al, (2016) Iran ²⁸	122	Caesarean section	29.70±5.4	29.26±4.6	57.5±14.2 (min)	60±10.4 (min)	80% O ₂	30% O ₂	SSI
Schietroma et al, (2016a) Italy ²⁹	239	Open perforated peptic ulcer surgery	58.3 (35– 80)	57.8 (30– 82)	63.2 (38– 104) min	58.7 (33– 102) min	80% O ₂	30% O ₂	SSI
Schietroma et al, (2016b) Italy ³⁰	85	Open colorectal resection	71.4 (55– 92)	68.6 (49– 86)	200 (95– 410) min	195 (100– 385) min	80% O ₂	30% O ₂	SSI, anastomotic leakage, reoperation required
Mayank et al, (2019) India ³¹	94	Elective colorectal surgery	57.02±12. 94	53.36±14. 45	233.51±8 7.65 (min)	207.66±1 03.53(min	80% O ₂ with 20% N ₂ O	33% O ₂ with 66% N ₂ O	SSI, PHD, anastomotic leakage
Ferrando et al, (2020) Multicenter ³²	740	Abdominal sutgery	64.2±12.8	63.9±13.9	214.2±93. 3 (min)	209.2±89. 7 (min)	80% O ₂	30% O ₂	SSI, PHD, 30-days mortality
Xue-Fei Li et al, (2020) China ³³	251	Abdominal surgery	54±14	53±13	190 (154– 245) min	200 (146– 258) min	80% O ₂	30% O ₂	SSI, sepsis, ICU admission

SSI= surgical site infection; PHD= postoperative hospitalization days; ICU= intensive care unit; min= minutes; h= hour

Table 2. Characteristic of included studies part 2											
Study	Type of SSI Assesment	Type of anaesthesia	Post-operative oxygenation	Follow up for SSI assesment	Bacterial culture						
Greif et al (2000) Austria ¹¹	ASEPSIS scores	General	2 h by NRBM	15 days	Escherichia coli Enterococcus Pseudomonas aeruginosa Staphylococcus aureus S. epidermidis Enterobacter						
Pryor et al, (2004) USA ¹²	yor et al, (2004) NR General 2 h by CN for low group and NRBM SA ¹² for high group		2 h by CN for low group and NRBM for high group	14 days	Escherichia coli Bacteroides fragilis Enterococcus faecalis Coagulase-negative staphylococcus No species identified						
Belda et al, (2005) Spain ¹³	ASEPSIS scores and CDC criteria	General	6 h by NRBM	14 days	NR						
Mayzler et al, (2005) Israel ¹⁴	NR	General	2 h by face mask	30 days	NR						
Myles et al, (2007) Multicenter ¹⁵	NR	General	NR	30 days	NR						
Gardella et al, (2008) USA ¹⁶	NR	Regional	2 h by NRBM	14 days	Group B streptococcus						
Meyhoff et al, (2009) Denmark ¹⁷	ASEPSIS scores and CDC criteria	General	2 h by NRBM	14 days	NR						
Bickel et al, (2011) Israel ¹⁸	ASEPSIS scores	General	2 h by CN for low group and NRBM for high group	14 days	NR						
Scifres et al, (2011) USA ¹⁹	NR	Regional	2 h by CN for low group and NRBM for high group	28 days	Group B streptococcus						
Thibon et al, (2012) France ²⁰	et al, (2012) CDC criteria General NR		NR	30 days	Staphylococcus aureus coagulasenegative staphylococcal species Pseudomonas aeruginosa Gram-negative bacteria						
Chen et al, (2013) Hong Kong ²¹	ASEPSIS scores and CDC criteria	General	24 h by facemask	30 days	NR						
Duggal et al, (2013) USA ²²	NR	Regional	1 h by facemask	14 days	NR						
Schietroma et al, (2013) Italy ²³	NR	General	6 h by facemask with reservoir	NR	NR						
Stall et al, (2013) USA ²⁴	ASEPSIS scores and CDC criteria	General	2 h by CN for low group and NRBM for high group	12 weeks	NR						
Williams et al, (2013) USA ²⁵	CDC criteria	Regional	2 h by aerosol mask	6 weeks	NR						
Kurz et al, (2015) Multicenter ²⁶	CDC criteria	General	1 h by NRBM	30 days	NR						
Wasnik et al, (2015) India ²⁷	ASPESIS scores	NR	2 h	10 days	NR						
Fariba et al, (2016) Iran ²⁸	ASEPSIS scores	Regional	6 h by normal mask for low group and venturi mask for high group	14 days	NR						
Schietroma et al, (2016a) Ital ²⁹	ASEPSIS scores and CDC criteria	General	6 h by NRBM with a reservoir	14 days	NR						
Schietroma et al, (2016b) Italy ³⁰	NNIS, SENIC scales, and ASEPSIS scores	General	6 h by NRBM	14 days	NR						
Mayank et al, (2019) India ³¹	ASEPSIS score and CDC criteria	General	6 h by standard venturi mask for low group and NRBM venturi face mask for high group	2 days	NR						
Ferrando et al, (2020) Multicenter ³²	CDC criteria	General and Regional	3 h by venturi mask for low group and NRBM with a reservoir for high group	30 days	NR						
Xue-Fei Li et al, (2020) China ³³	CDC criteria	General	NR	7 days	NR						

NR= Not Reported; h= hour; CN= canule nasal; NRBM= non rebreathable mask

Outcomes: Surgical site Infection

23 studies reported on surgical site infection incidences with 656/4672 events in the low FiO₂ and 558/4671 events in the high FiO₂ (Figure 2).

Overall, high FiO_2 was not associated with an reducing risk of SSI in all-type surgery (pooled RR 0.85; 95% CI 0.72 – 1.01; p=0.07). There was considerable heterogeneity in the analysis (I²=52%). Accordance results also showed by subgroup analysis revealed that high FiO_2 statistically no significant to reduced SSI for colorectal surgery (pooled RR 0.84; 95% CI 0.64 – 1.10; p=0.20), open appendectomy (pooled RR 0.41; 95% CI 0.16 – 1.03; p=0.06), and caesarean section (pooled RR 1.20; 95% CI 0.91 – 1.58; p=0.21).

In contrast, high FiO_2 significantly reduced SSI in patients who underwent abdominal surgery (pooled RR 0.78; 95% CI 0.62 – 0.99; p=0.04) with high heterogeneity between studies (I²=61%).

Outcomes: Sepsis

Two studies reported on sepsis with 16/826 events in low FiO₂ and 23/811 events in high FiO₂.

This results showed the trend of sepsis higher in high FiO_2 group but the pooled estimates did not demonstrate statistically significant (pooled RR 1.47; 95% CI 0.78 – 2.76; p=0.23). There was mild heterogeneity (I²=0%).

Outcomes: Anastomotic leakage

Anastomotic leakage only available for abdominal surgery and conducted by six trials with 51/466events in low FiO₂ and 28/464 in high FiO₂ (Figure 3). The pooled estimates showed that high FiO₂ statistically significant in terms to reducing the incidence of anastomotic leakage for abdominal surgery (pooled RR 0.55; 95% CI 0.36 - 0.85; p=0.008).

Low heterogeneity was observed in the analysis ($I^2=0\%$).

Four studies conducted for colorectal surgery as subgroup analysis showed statistically significant association between high FiO₂ and anastomotic leakage (pooled RR 0.61; 95% CI 0.37 – 1.00; p=0.05). Heterogeneity between studies was low $(I^2=0\%)$.

Outcomes: Postoperative hospitalization days

Eight studies reported on postoperative hospitalization days (PHD) available only for abdominal surgery. The result showed not significantly differing between the groups (pooled MD 0.16; 95% CI -0.67 -0.98; p=0.71). Heterogeneity between studies was high ($I^2=0.74$).

Subgroup analysis was conducted in terms for open appendectomy showed no significantly differing (pooled MD -1.25; 95% CI -3.23 - 0.74; p=0.22) with high $(I^2 = 80\%).$ heterogeneity However, instead reducing the PHD for colorectal surgery as subgroup analysis, high FiO₂

showed statistically significant increase of PHD (pooled MD 0.80; 95% CI 0.24 -1.35; p=0.005). A low heterogeneity

was observed ($I^2 = 0\%$).

Figure 2. Forest Plot for Incidence of SSI between High FiO2 Group and Low FiO2 Group

	High Fi	igh FiOz Low FiOz		iO2		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year		M-H, Fixed, 95% Cl
Meyhoff et al, 2009	21	685	15	701	93.7%	1.43 [0.74, 2.76]	2009		
Li et al, 2020	2	126	1	125	6.3%	1.98 [0.18, 21.60]	2020		
Total (95% CI)		811		826	100.0%	1.47 [0.78, 2.76]			•
Total events	23		16						
Heterogeneity: Chi ² =	0.07, df=	1 (P =	0.80); I ^z =	= 0%				L	
Test for overall effect:	Z=1.19 ((P = 0.2	:3)					0.01	High FiO ₂ Low FiO ₂

b) Anastomotic leakage

	High F	iO2	Low F	iO2		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% CI
3.1.1 Abdominal surgery								
Mayzler et al, 2005	2	19	3	19	5.9%	0.67 [0.13, 3.55]	2005	
Meyhoff et al, 2009	12	270	18	272	35.2%	0.67 [0.33, 1.37]	2009	
Schietroma et al, 2013	8	86	17	85	33.6%	0.47 [0.21, 1.02]	2013	
Schietroma et al, 2016b	5	42	11	43	21.4%	0.47 [0.18, 1.22]	2016	
Mayank et al, 2019	1	47	2	47	3.9%	0.50 [0.05, 5.33]	2019	
Subtotal (95% CI)		464		466	100.0%	0.55 [0.36, 0.85]		-
Total events	28		51					
Heterogeneity: Chi ² = 0.65	, df = 4 (P	= 0.96); I ² = 0%					
Test for overall effect: Z = 2	2.67 (P = I	0.008)						
3.1.2 Colorectal surgery								
Mayzler et al. 2005	2	19	3	19	7 9 %	0.67/0.13/3.551	2005	_
Meyhoff et al. 2009	12	217	16	223	41.7%	0.77 [0.37 1.59]	2009	
Schietroma et al. 2016b		86	17	85	45.1%	0.47 [0.21, 1.02]	2016	
Mavank et al. 2019	1	47	2	47	5.3%	0.50 [0.05, 5.33]	2019	
Subtotal (95% CI)		369		374	100.0%	0.61 [0.37, 1.00]		-
Total events	23		38					
Heterogeneity: Chi ² = 0.90	, df = 3 (P	= 0.83); I ² = 0%					
Test for overall effect: Z = 1	.96 (P = I	0.05)						
								0.05 0.2 1 5
								High FiO ₂ Low FiO ₂

c) Postoperative hospitalization days

	Hig	jh FiOz	2	Lo	w FiOz	2		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
4.1.2 Abdominal surge	ery									
Greif et al, 2000	12.2	6.1	250	11.9	4	250	17.2%	0.30 [-0.60, 1.20]	2000	
Pryor et al, 2004	8.3	7.5	80	6.4	4.7	80	9.8%	1.90 [-0.04, 3.84]	2004	
Belda et al, 2005	11.7	7	148	10.5	4.4	143	13.8%	1.20 [-0.14, 2.54]	2005	
Bickel et al, 2011	2.51	0.88	107	2.92	1.51	103	20.9%	-0.41 [-0.75, -0.07]	2011	-
Chen et al, 2013	9.7	4.4	30	10.2	12.3	30	2.7%	-0.50 [-5.17, 4.17]	2013	
Kurz et al, 2015	8.8	5.4	285	7.7	4.6	270	17.7%	1.10 [0.27, 1.93]	2015	
Wasnik et al, 2015	7.37	3.57	32	9.84	3.68	32	10.8%	-2.47 [-4.25, -0.69]	2015	_
Ferrando et al, 2020	11	15.7	362	12.1	18.8	355	7.1%	-1.10 [-3.64, 1.44]	2020	
Subtotal (95% CI)			1294			1263	100.0%	0.16 [-0.67, 0.98]		◆
Heterogeneity: Tau ² =	0.81; Ch	i² = 27	.15, df	= 7 (P =	0.000	3); I ^z = 1	74%			
Test for overall effect: 2	Z = 0.37	(P = 0.	71)							
4.1.3 Colorectal surge	ery									
Greif et al, 2000	12.2	6.1	250	11.9	4	250	37.4%	0.30 [-0.60, 1.20]	2000	
Belda et al, 2005	11.7	7	148	10.5	4.4	143	17.1%	1.20 [-0.14, 2.54]	2005	
Chen et al, 2013	9.7	4.4	30	10.2	12.3	30	1.4%	-0.50 [-5.17, 4.17]	2013	
Kurz et al, 2015	8.8	5.4	285	7.7	4.6	270	44.1%	1.10 [0.27, 1.93]	2015	
Subtotal (95% CI)			/13			693	100.0%	0.80 [0.24, 1.35]		◆
Heterogeneity: Tau ² =	0.00; Ch	i ² = 2.3	31, df =	3 (P = 0).51); P	*= 0%				
lest for overall effect: 2	2 = 2.82	(P = 0.	005)							
4.1.4 Open appendect	tomy									
Bickel et al. 2011	2.51	0.88	107	2.92	1.51	103	59.3%	-0.41 [-0.750.07]	2011	
Wasnik et al. 2015	7.37	3.57	32	9.84	3.68	32	40.7%	-2.47 [-4.25, -0.69]	2015	_
Subtotal (95% CI)			139			135	100.0%	-1.25 [-3.23, 0.74]		-
Heterogeneity: Tau ² =	1.70; Ch	i ² = 4.9	99, df =	1 (P = 0)).03); P	= 80%	,			
Test for overall effect: 2	Z = 1.23	(P = 0.	22)		~					
			-							
										-10 -5 0 5 10 High EiO2 Low EiO2
										Fight 102 Edwilloz

Figure 3. Forest Plot for Incidence of Sepsis, Anastomotic leakage, and Postoperative hospitalization days between High FiO2 Group and Low FiO₂ Group

	High F	iO2	Low Fi	iOz		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% CI
5.1.1 All-type surger	у							
Greif et al, 2000	5	250	12	250	5.8%	0.42 [0.15, 1.17]	2000	
Pryor et al, 2004	9	80	7	80	3.4%	1.29 [0.50, 3.28]	2004	
Belda et al, 2005	4	148	5	143	2.4%	0.77 [0.21, 2.82]	2005	
Myles et al, 2007	122	997	140	1015	66.6%	0.89 [0.71, 1.11]	2007	
Meyhoff et al, 2009	50	685	44	701	20.9%	1.16 [0.79, 1.72]	2009	
Li et al, 2020	4	126	2	125	1.0%	1.98 [0.37, 10.64]	2020	
Subtotal (95% CI)		2286		2314	100.0%	0.94 [0.78, 1.13]		•
Total events	194		210					
Heterogeneity: Chi² =	: 5.07, df=	5 (P =	0.41); I ^z =	= 1%				
Test for overall effect	: Z = 0.67	(P = 0.5	50)					
5.1.3 Abdominal sur	aerv							
Greif et al. 2000	5	250	12	250	17.2%	0.42/0.15/1.171	2000	
Prvor et al. 2004	9	80	7	80	10.1%	1.29 [0.50, 3.28]	2004	_
Belda et al. 2005	4	148	5	143	7.3%	0.77 [0.21, 2.82]	2005	
Meyhoff et al. 2009	50	685	44	701	62.5%	1.16 [0.79, 1.72]	2009	
Li et al, 2020	4	126	2	125	2.9%	1.98 [0.37, 10.64]	2020	
Subtotal (95% CI)		1289		1299	100.0%	1.04 [0.76, 1.43]		◆
Total events	72		70					
Heterogeneity: Chi ² =	= 4.32, df =	4 (P =	0.36); I ^z =	= 7%				
Test for overall effect	: Z = 0.25 ((P = 0.8	80)					
5.1.5 Colorectal surg	gery							_
Greif et al, 2000	5	250	12	250	70.2%	0.42 [0.15, 1.17]	2000	
Belda et al, 2005	4	148	5	143	29.8%	0.77 [0.21, 2.82]	2005	
Subtotal (95% CI)		398		393	100.0%	0.52 [0.24, 1.16]		
Total events	9		17					
Heterogeneity: Chi ² =	: 0.54, df=	1 (P =	0.46); I ² =	= 0%				
Test for overall effect	: Z = 1.59 ((P = 0.1	1)					
								0.05 0.2 1 5 20
								High FiO ₂ Low FiO ₂

e) Reoperation required

	High F	i0z	Low F	iO2		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Pryor et al, 2004	4	80	0	80	9.2%	9.00 [0.49, 164.46]	2004	
Meyhoff et al, 2009	104	685	104	701	50.9%	1.02 [0.80, 1.31]	2009	•
Schietroma et al, 2013	4	86	10	85	30.9%	0.40 [0.13, 1.21]	2013	
Schietroma et al, 2016b	0	42	3	43	9.0%	0.15 [0.01, 2.75]	2016	
Total (95% CI)		893		909	100.0%	0.78 [0.30, 2.06]		•
Total events	112		117					
Heterogeneity: Tau ² = 0.48); Chi ² = 6	.49, df	= 3 (P = 0	0.09); I ^z	= 54%			
Test for overall effect: Z = ().50 (P = I	D.62)						High FiO2 Low FiO2

f) 30-days mortality

	High F	iO2	Low F	i02		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Myles et al, 2007	3	997	9	1015	25.3%	0.34 [0.09, 1.25]	2007	,
Meyhoff et al, 2009	30	685	20	701	56.0%	1.54 [0.88, 2.68]	2009) +=-
Kurz et al, 2015	0	285	1	270	4.4%	0.32 [0.01, 7.72]	2015	; •
Ferrando et al, 2020	8	362	5	355	14.3%	1.57 [0.52, 4.75]	2020)
Total (95% CI)		2329		2341	100.0%	1.18 [0.76, 1.84]		-
Total events	41		35					
Heterogeneity: Chi ² = 5	5.27, df=	3 (P = 0).15); I ^z =					
Test for overall effect: 2	Z = 0.75 (P = 0.4	5)					UUS U.2 I 5 20 High FiO2 Low FiO2

Figure 4. Forest Plot for ICU Admission, Reoperation Required, and 30-days mortality between High FiO₂ Group and Low FiO₂ Group

Outcomes: ICU admission

Six studies reported on ICU admission with 210/2314 patients in low

 FiO_2 group and 194/2286 in high FiO_2 group. There was statistically no significant in terms of ICU admission for all-type surgery between the groups (pooled RR 0.94; 95% CI 0.78 - 1.13; p=0.50) with low heterogenity was $(I^2 = 1\%).$ The observed subgroup analysis was conducted for abdominal surgery and colorectal surgery also showed statistically no significant difference (pooled RR 1.04; 95% CI 0.76 -1.43; p=0.80) and (pooled RR 0.52; 95% CI 0.24 - 1.16; p=0.11) with low heterogeneity was observed ($I^2=7\%$) and $(I^2=0\%).$

Outcomes: Reoperation required

Four studies reported on reoperation required, where of 117/909 events observed in the low FiO₂ group and 112/893 events in the high FiO₂ group. There was no significant difference in the reoperation required between the groups (pooled RR 0.78; 95% CI 0.30 – 2.06; p=0.62). High heterogeneity was observed in the analysis (I²=54%).

Outcomes: 30-days mortality

Four studies reported on 30-days mortality with 35/2341 events in the low FiO₂ group and 41/2329 events in the high FiO₂ group. 30-days mortality was observed higher in High FiO₂ group, but there was no statistically significant different (pooled RR 1.18; 95% CI 0.76 - 1.84; p=0.45). A low heterogeneity was observed (I^2 =43).

DISCUSSION

A meta analysis of 23 RCTs involving 9,343 patients was conducted in both patients with or without endotracheal intubation in order to developing the WHO guideline. This study showed no evidence for a benefit of the use high FiO₂ (80%) compared low FiO_2 (30-35%) to prevent or reducing the risk of SSI in all-type surgery although the incidence of SSI was higher in low FiO₂ group. In contrast, previous meta-analysis similar with WHO guideline revealed that high FiO₂ reducing the SSI risk in surgical patients under general anaesthesia with endotracheal intubation^{4,34}. Although there are six additional studies where of three studies are the most recent ³¹⁻³³ and three other are studies that have done of investigation enhanced that incidence of SSI still higher in low FiO₂ group, there are six studies showed contradictory incidence with relatively greatest RR other than in seventeen studies ^{12,16,19,21,26,31}. Subgroup analysis in terms of colorectal surgery also showed no evidence benefit of the use high FiO₂ compared low FiO₂, this results similar with previous meta analysis even though these previous study was conducted not only for RCTs³⁵. Caesarean section and appendectomy that performed by a lack of included studies demonstrate that high FiO₂ no evidence for benefit to prevent SSI. However, modification of subgroup analysis performed for all-type abdominal surgery suggest that high FiO₂ beneficially to prevent or reducing the risk of SSI.

Instead reducing the postoperative adverse events, this meta analysis showed that the trend of sepsis and 30-days mortality was higher in high FiO₂ group even though the results no significant. statistically PHD only showed statistically significant in subgroup analysis in term for colorectal surgery revealed that the use of high FiO₂ increases duration of PHD. Previous meta-analysis showed no definite signal of harm with 80% FiO₂ in surgical patients undergoing general anaesthesia because of there is lack of safety-related included studies that suggest to discourage this perioperative treatment ⁶. Supplementation of high and low FiO₂ did not differentially of the pneumonia, mortality, respiratory failure, and length of hospital stay, but high FiO₂ associated with a significantly higher incidence of atelectasis ^{6,36}.

The incidence of ICU admission and reoperation required was higher in low FiO₂ group but did not statistically significant. The beneficially evidence of high FiO₂ for secondary outcomes was observed only for anastomotic leakage in terms of both abdominal surgery and colorectal surgery. This results contrasts with previous meta-analysis where of the included studies conducted by multiple study design³⁵. The beneficially of high FiO₂ for anastomotic leakage may related with increases of tissue perfusion in order to maintained mechanical stability of anastomosis³⁷.

Our meta-analysis was carry out by the most up to date search of the literature and clinically-important outcomes. However, this study has some limitations. First, the subgroup analysis performed by type of surgery instead of patient who undergo endotracheal intubation or not. However, there are no previous meta analysis that performed by type of surgery especially to investigated the use of high FiO₂ to reducing or prevent incidence of SSI. Second, the time of literature search not limited to the 5 years, this last condition was performed following WHO guideline which is the WHO latest guideline conducted by meta-analysis studies that included studies above 5 years of publication.

CONCLUSION

In conclusion, the administration of 80% FiO₂ in both patients with or without endotracheal intubation for alltype surgery is not associated with the incidence of SSI, sepsis, PHD, ICU admission, reoperation required, and 30days mortality. The evidence for a benefit the use of 80% FiO₂ is associated with reduction of SSI in abdominal surgery. It also showed beneficially for reducing of anastomotic leakage in abdominal and colorectal surgery. However, the use of 80% FiO₂ increases the duration of PHD in abdominal surgery.

In conclusion, based on the evidence showed in this result, the administration of 80% FiO2 in both patients with or without endotracheal intubation is strongly associated with reduction of SSI in abdominal surgery. This intervention is also associated with the reduction of anastomotic leakage in abdominal and colorectal surgery. However, it increases the duration of PHD in abdominal surgery.

CONFLICT OF INTEREST

All authors declare no conflict of interest.

REFERENCES

- Alvandipour M, Mokhtari-Esbuie F, Baradari AG, Firouzian A, Rezaie M. Effect of hyperoxygenation during surgery on surgical site infection in colorectal surgery. Annals of Coloproctology. 2019 Feb 1;35(1):9–14.
- Berriós-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surgery. 2017 Aug 1;152(8):784–91.
- Syaiful RA, Mazni Y, Prasetyo ML, Lalisang TJM. Surgical site infection after digestive surgery in a single tertiary hospital in indonesia: Six years of data. Med J Indones. 2020;29(3):310–5.
- WHO. Global Guidelines for The Prevention of Surgical Site Infection, 2nd ed. [Internet]. who.int. 2018 [cited 2022 Jun 1]. Available from: https://www.who.int/publications /i/item/global-guidelines-for-theprevention-of-surgical-siteinfection-2nd-ed

- Habre W, Peták F. Perioperative use of oxygen: Variabilities across age. British Journal of Anaesthesia. 2014 Dec 1;113:ii26–36.
- Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30-35% Fraction of Inspired Oxygen in Patients Undergoing Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia. 2019 Mar 1;122(3):289–91.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement. 2015;1–9.
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Systematic Reviews. 2016 Dec 5;5(1).
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. The BMJ. 2019;366.

- Higgins T, Green S, Thomas J, 10. Chandler J, Cumpston M, Li T, et Cochrane Handbook al. for Systematic Reviews of Interventions. Higgins JPT. Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Wiley; 2011.
- Greif R, Akca O, Horn EP, Kurz A, Sessler DI. Supplemental Perioperative Oxygen to Reduce The Incidence of Surgical-Wound Infection. The New England Journal of Medicine. 2000;342(3):161–7.
- 12. Pryor KO, Fahey Iii TJ, Lien CA, Goldstein PA. Surgical Site Infection and the Routine Use of Perioperative Hyperoxia in a General Surgical Population A Randomized Controlled Trial. Journal of American Medical Association [Internet]. 2004;291(1):79–87. Available from: https://jamanetwork.com/
- 13. Belda FJ, Aguilera L, García De La Asunción J, Alberti J, Vicente R, Ferrándiz L, et al. Supplemental Perioperative Oxygen and the Risk of Surgical Wound Infection A Randomized

Controlled Trial. Journal of American Medical Association [Internet]. 2005;294(16):2036– 42. Available from: http://jama.jamanetwork.com/

- 14. Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiologica. 2005;71(1-2):21-5.
- 15. Myles PS, Leslie K, Chan MT, Forbes A, Paech MJ, Silbert BS, et al. Avoidance of Nitrous Oxide for Patients Undergoing Major Surgery A Randomized Controlled Trial. Anesthesiology [Internet]. 2007;107:221–52. Available from: http://www.anesthesiology.org,
- 16. Gardella C. Goltra LB. Laschansky E, Drolette L, Magaret A, Chadwick HS, et al. **High-Concentration** Supplemental Perioperative Oxygen to Reduce the Incidence of Postcesarean Surgical Site Infection А Randomized

Controlled Trial. Obstetrics & Gynecology. 2008;112(3):545–52.

- 17. Meyhoff CS. Wetterslev J. Jorgensen LN, Henneberg SW, Høgdall C, Lundvall L, et al. Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary Complications After Abdominal Surgery: The PROXI Randomized Clinical Trial. Journal of American Medical Association [Internet]. 20019;302(14):1543-50. Available from: https://jamanetwork.com/
- Bickel A, Gurevits M, Vamos R, 18. Ivry S, Eitan A. Perioperative Hyperoxygenation and Wound Site Infection Following Surgery Appendicitis for Acute А Randomized, Prospective, Controlled Trial. The Archieves of Surgery [Internet]. 2011;146(4):464–70. Available from: http://archsurg.jamanetwork.com/
- Scifres CM, Leighton BL,
 Fogertey PJ, MacOnes GA,
 Stamilio DM. Supplemental

oxygen for the prevention of
postcesareaninfectiousmorbidity:Arandomizedcontrolled trial.In:AmericanJournalofObstetricsandGynecology.2011.Controlled

- 20. Thibon P, Borgey F, Bastien Boutreux S, Hanouz JL, le Coutour X, Parienti JJ. Effect of Perioperative Oxygen Supplementation on 30-day Surgical Site Infection Rate in Abdominal, Gynecologic, and Breast Surgery The ISO 2 Randomized Controlled Trial. Anesthesiology [Internet]. 2012;117(3):504–11. Available from: www.anesthesiology.org
- 21. Chen Y, Liu X, Cheng CH, Gin T, Leslie K, Myles P, et al. Leukocyte DNA Damage and Wound Infection after Nitrous Oxide Administration. Anesthesiology. 2013;118(6):1322–31.
- 22. Duggal N, Poddatorri V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: A randomized

trial. Obstetrics and Gynecology. 2013 Jul;122(1):79–84.

- 23. Schietroma M, Cecilia EM, Carlei F, Sista F, de Santis G, Piccione F, et al. Prevention of anastomotic leakage after total gastrectomy with perioperative supplemental administration: oxygen А prospective randomized, doubleblind, controlled, single-center trial. Annals of Surgical 2013 Oncology. May;20(5):1584–90.
- 24. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole R v. Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: A randomized controlled pilot trial. Journal of Trauma and Acute Care Surgery. 2013 Oct;75(4):657–63.
- Williams NL, Glover MM, Crisp C, Acton AL, McKenna DS. Randomized controlled trial of the effect of 30% versus 80% fraction of inspired oxygen on cesarean delivery surgical site infection. American Journal of Perinatology. 2013;30(9):781–6.

- 26. Kurz A, Fleischmann E, Sessler DI, Buggy DJ, Apfel C, Akcą O. Effects of supplemental oxygen and dexamethasone on surgical site infection: A factorial randomized trial. British Journal of Anaesthesia. 2015 Sep 1;115(3):434–43.
- 27. Wasnik N, Agrawal VP, Yede J, Gupta A, Soitkar S. Role of supplemental oxygen in reducing surgical site infection in acute appendicities: Our experience of sixty four cases. International Journal of Biomedical and Advance Research [Internet]. 2015;6(02):6. Available from: www.ssjournals.com
- 28. Fariba F, Loghman G, Daem R, Dina S, Jamal S. Effect of supplemental oxygen on the incidence and severity of Wound Infection after cesarean surgery. Journal of Chemical and Pharmaceutical Sciences [Internet]. 2016;9(4):3320–5. Available from: www.jchps.com
- Schietroma M, Cecilia EM, de Santis G, Carlei F, Pessia B, Amicucci G. Supplemental Peri-Operative Oxygen and Incision

Site Infection after Surgery for Perforated Peptic Ulcer: A Randomized, Double-Blind Monocentric Trial. Surgical Infections. 2016 Jan 1;17(1):106– 13.

- 30. Schietroma M, Pessia B, Colozzi S, Carlei F, Shehaj I, Amicucci G. Effect of High Perioperative Oxygen Fraction on Surgical Site Infection Following Surgery for Acute Sigmoid Diverticulitis. A Prospective, Randomized, Double Blind, Controlled, Monocentric Trial. Chirurgia (Bucur). 2016;111(3):242–50.
- 31. Mayank Mohsina S. M. Sureshkumar S, Kundra P, Kate V. Effect of Perioperative High Oxygen Concentration on Postoperative SSI in Elective Colorectal Surgery—A Randomized Controlled Trial. Journal of Gastrointestinal Surgery. 2019 Jan 15;23(1):145-52.
- 32. Ferrando C, Aldecoa C, Unzueta C, Belda FJ, Librero J, Tusman G, et al. Effects of oxygen on post-surgical infections during an individualised perioperative

open-lung ventilatory strategy: a randomised controlled trial. British Journal of Anaesthesia. 2020 Jan 1;124(1):110–20.

- 33. Li XF, Jiang D, Jiang YL, Yu H, Zhang MQ, Jiang JL, et al. Comparison of low and high inspiratory oxygen fraction added to lung-protective ventilation on postoperative pulmonary complications after abdominal surgery: A randomized controlled trial. Journal of Clinical Anesthesia. 2020 Dec 1;67.
- 34. Jonge S de, Egger M, Latif A, Berenholtz Loke YK. S, Boermeester M. et al. Effectiveness of 80% vs 30-35% Fraction of Inspired Oxygen in Patients undergoing Surgery: an updated systematic review and meta-analysis. British Journal of Anaesthesia. 2019 Mar 1;122(3):289-91.
- 35. Shaffer SK, Tubog TD, Kane TD,Stortroen NE. SupplementalOxygen and Surgical Site

Infection in Colorectal Surgery: A Systematic Review and Metaanalysis. AANA Journal [Internet]. 2021;89(3). Available from: www.aana.com/aanajournalonlin e

- 36. Lim CH, Han J young, Cha S ha, Kim YH, Yoo KY, Kim HJ. Effects of high versus low inspiratory oxygen fraction on postoperative clinical outcomes in patients undergoing surgery under general anesthesia: A systematic review and meta-analysis of controlled randomized trials. Journal of Clinical Anesthesia. 2021 Dec 1;75.
- 37. Inglin RA, Brügger LE, Candinas D, Harrison BS, Eberli D. Effect of oxygen-producing suture material on hypoxic colonic anastomoses in an experimental model. BJS Open. 2019 Dec 1;3(6):872–81.